
Android CCID Library User Manual
Version 2.0



Android CCID Library User Manual

Page 2 of 29

Document History

Date Version Description of Changes

3rd July 2012 1.0 Initial version

7th September 2012 2.0
Added documentation for 3 new API’s – SCardReconnect,
SCardGetStatusChange, SCardGetAttrib



Android CCID Library User Manual

Page 3 of 29

Contents

1.0 Legal Information .........................................................................................................................................4

2.0 Licenses ........................................................................................................................................................4

3.0 Trademarks ..................................................................................................................................................5

4.0 Introduction..................................................................................................................................................5

5.0 Terms and Abbreviations..............................................................................................................................5

6.0 Software Design Overview ............................................................................................................................6

7.0 Minimum Requirements ...............................................................................................................................7

8.0 Prerequisites .................................................................................................................................................7

9.0 SDK Contents ...............................................................................................................................................7

10.0 Adding JAR file in Eclipse ............................................................................................................................8

11.0 List of API’s supported by the library .........................................................................................................11

11.1 USBRequestPermission .............................................................................................................................12
11.2 SCardEstablishContext ..............................................................................................................................13
11.3 SCardListReaders .....................................................................................................................................13
11.4 SCardConnect...........................................................................................................................................14
11.5 SCardStatus ..............................................................................................................................................15
11.6 SCardTransmit..........................................................................................................................................16
11.7 SCardControl............................................................................................................................................16
11.8 SCardDisconnect ......................................................................................................................................17
11.9 SCardReleaseContext ................................................................................................................................17
11.10 SCardReconnect ....................................................................................................................................18
11.11 SCardGetStatusChange ..........................................................................................................................19
11.12 SCardGetAttrib .....................................................................................................................................20

12.0 Class Definition...........................................................................................................................................21

13.0 List of Error Codes .....................................................................................................................................29



Android CCID Library User Manual

Page 4 of 29

1.0 Legal Information

The content published in this document is believed to be accurate. Identive does not, however,
provide any representation or warranty regarding the accuracy or completeness of its content and
regarding the consequences of the use of information contained herein. If this document has the status
“Draft”, its content is still under internal review and yet to be formally validated.

Identive reserves the right to change the content of this document without prior notice. The
content of this document supersedes the content of previous versions of the same document. The
document may contain application descriptions and/or source code examples, which are for illustrative
purposes only. Identive gives no representation or warranty that such descriptions or examples are
suitable for the application that the reader may want to use them for.

2.0 Licenses

If the document contains source code examples, they are provided for illustrative purposes only and subject
to the following restrictions:

• You MAY at your own risk use or modify the source code provided in the document in
applications you may develop. You MAY distribute those applications ONLY in form of
compiled applications.

• You MAY NOT copy or distribute parts of or the entire source code without prior
written consent from Identive.

• You MAY NOT combine or distribute the source code provided with Open Source
Software or with software developed using Open Source Software in a manner that subjects the
source code or any portion thereof to any license obligations of such Open Source Software.



Android CCID Library User Manual

Page 5 of 29

3.0 Trademarks

Android is a trademark of Google Inc.

4.0 Introduction

Android CCID library serves as an interface between Android platform with USB host support and Identive
CCID compliant USB smartcard readers. Android application developers will integrate this library as part of
their Android application to communicate with Identive’s CCID readers with VID 0x04E6 or 0x1FFA.

5.0 Terms and Abbreviations

Term/ Abbreviation Description
ADK Android Development Kit
API Application Programming Interface

CCID Chip Card Interface Device
ICC Integrated Circuit Card
IFD Interface Device
ISO International Standardization Organization
JAR Java Archive

PC/SC Personal Computer / Smart Card interface
USB Universal Serial Bus
VID Vendor ID



Android CCID Library User Manual

Page 6 of 29

6.0 Software Design Overview

Android Application

Android CCID Library

Android OS USB Core

CCID Compliant Identive IFD

Android CCID Library User Manual

Page 6 of 29

6.0 Software Design Overview

Android Application

Android CCID Library

Android OS USB Core

CCID Compliant Identive IFD

Android CCID Library User Manual

Page 6 of 29

6.0 Software Design Overview

Android Application

Android CCID Library

Android OS USB Core

CCID Compliant Identive IFD



Android CCID Library User Manual

Page 7 of 29

7.0 Minimum Requirements

1. USB host mode is supported in Android 3.1 and higher, hence the device should have Android 3.1 or
above.

2. The Android device should support USB host mode. Please refer to the device technical specification
for details.

8.0 Prerequisites

The Application developer should have the basic knowledge of the following
1. Java and Android Programming
2. Use of Eclipse for android

9.0 SDK Contents

The SDK Package holds the following

1. Library Folder contains
a. androidSCardV1.0.jar – to be used for the application development

2. Sample Application Folder contains
a. IdentiveGetZv1.0 Eclipse Source Code – to be used for reference
b. IdentiveGetZV1.0.apk
c. SampleREQFile.REQ
d. Readme for req file.txt

3. Android_CCID_Library_User_Manual.pdf



Android CCID Library User Manual

Page 8 of 29

10.0 Adding JAR file in Eclipse

1. Open Eclipse IDE; create a new Android project from FILE NEW Android Project. Enter a
project name e.g. “SampleSCard” and click NEXT

2. In the “Select Build Target” window, choose API version 13 and above (i.e.) Android 3.2 and above
for USB support and click “Next” to provide a suitable package name and then click “Finish”.



Android CCID Library User Manual

Page 9 of 29

3. A new project with the name “SampleSCard” is created in the project Explorer.

4. Now Create a New Folder named “libs” in the project root and copy the “androidSCard.jar” to this
folder

5. Import the library into the project.

6. Create an object for the class “SCard” to use the APIs.



Android CCID Library User Manual

Page 10 of 29

7. Include the following details in the application Manifest for auto launch of application on
device arrival. Please refer to the sample application code for detailed information.



Android CCID Library User Manual

Page 11 of 29

11.0 List of API’s supported by the library

Current list of API’s supported by the library. Please refer to the “WinDefs.java” c la s s for values of
input parameter definitions e.g. SCARD_PROTOCOL_T0, SCARD_PROTOCOL_T1 etc.

1. USBRequestPermission
2. SCardEstablishContext
3. SCardListReaders
4. SCardConnect
5. SCardStatus
6. SCardTransmit
7. SCardControl
8. SCardDisconnect
9. SCardReleaseContext
10. SCardReconnect
11. SCardGetStatusChange
12. SCardGetAttrib



Android CCID Library User Manual

Page 12 of 29

11.1 USBRequestPermission

Applications must get user permission to access USB devices connected to an Android host. The
USBRequestPermission API helps the application developer to get access rights for Identive’s CCID device
connected to the host. If the user does not grant access SCardListReaders will fail.

Note: The application developer should take care of calling this function at appropriate location such as
onCreate() function of the activity so that he gets the user authentication before proceeding with other Scard
API calls. This function will pop up a dialog as shown below where the user has to grant the access. If the
application calls any Scard API’s before the user grants permission then it will fail.

Syntax:
LONG USBRequestPermission (

in CONTEXT context
);

Parameters:
context [in]

The application context

Return value:
Please refer to the “List of Error Codes” section for details on return values.



Android CCID Library User Manual

Page 13 of 29

11.2 SCardEstablishContext

The SCardEstablishContext function establishes the handle to the USB Service using the
UsbManager API.

Syntax:
LONG SCardEstablishContext (

in CONTEXT context
);

Parameters:
context [in]

The application context

Return value:
Please refer to the “List of Error Codes” section for details on return values.

11.3 SCardListReaders

The SCardListReaders function provides the list of Identive readers as an array list.

Syntax:
LONG SCardListReaders (

in CONTEXT context,
out ARRAYLIST<STRING> deviceList

);

Parameters:
context[in]

The application context or the base context

deviceList[out]
An array list of String values containing the names of connected Identive readers

Return value:
Please refer to the “List of Error Codes” section for details on return values.



Android CCID Library User Manual

Page 14 of 29

11.4 SCardConnect

The SCardConnect function establishes a connection between the calling application and a smart card
contained by a specific reader. In order to communicate with the card we have to connect using
“SCARD_SHARE_EXCLUSIVE” mode and if we want to communicate with the reader (when card is
not needed) we have to use SCARD_SHARE_DIRECT. This mode is usually used for sending escape
IOCTL’s to the reader.

Syntax:
LONG SCardConnect (

in STRING szReader,
in INT nMode,
in INT nPreferredProtocols

);

Parameters:
szReader [in]

The name of the reader that contains the target card.

nMode[in]
A flag that indicates whether other applications may form connections to the card.

Value Meaning

SCARD_SHARE_EXCLUSIVE This application is not willing to share the card with other
applications.

SCARD_SHARE_DIRECT This application is allocating the reader for its private use, and
will be controlling it directly. No other applications are allowed
access to it.



Android CCID Library User Manual

Page 15 of 29

nPreferredProtocols [in]
A bitmask of acceptable protocols for the connection. Possible values may be combined with

the OR operation.

Value Meaning

SCARD_PROTOCOL_T0 T=0 is an acceptable protocol.

SCARD_PROTOCOL_T1 T=1 is an acceptable protocol.

SCARD_PROTOCOL_Tx If the protocol of the card is not known this value can be used so
that this is the OR of above two protocol values.

SCARD_PROTOCOL_UNDEFINED Should be used in case of “SCARD_SHARE_DIRECT”
connection

Return value:
Please refer to the “List of Error Codes” section for details on return values.

11.5 SCardStatus

The SCardStatus function provides the current status of a smart card in a reader. You can call it any
time after a successful call to SCardConnect and before a successful call to SCardDisconnect. It
does not affect the state of the reader. Please refer to the section “Class definition” for details on
SCARDSTATE class.

Syntax:
LONG SCardStatus (

_out SCARDSTATE cardstate
);

Parameters:
cardstate [in]

An Object of the class SCARDSTATE

Return value:
Please refer to the “List of Error Codes” section for details on return values.



Android CCID Library User Manual

Page 16 of 29

11.6 SCardTransmit

The SCardTransmit function sends the command to the smart card and expects to receive data back
from the card. If the command involves chaining then it is automatically taken care by the library and the
final output is given back to the application. Please refer section “Class definition” for details on
SCARDIOBUFFER class.

Syntax:
LONG SCardTransmit (

in/out SCARDIOBUFFER transmit
);

Parameters:
transmit [in/out]

An Object of the class SCARDIOBUFFER

Return value:
Please refer to the “List of Error Codes” section for details on return values.

11.7 SCardControl

The SCardControl function can be used to send escape IOCTL to the reader. You can call it any time
after a successful call to SCardConnect and before a successful call to SCardDisconnect. For a list of
escape IOCTL codes and return values please refer to the respective reader’s user manual.

Syntax:
LONG SCardControl (

in/out SCARDIOBUFFER transmit
);

Parameters:
transmit [in/out]

An Object of the class SCARDIOBUFFER

Return value:
Please refer to the “List of Error Codes” section for details on return values.



Android CCID Library User Manual

Page 17 of 29

11.8 SCardDisconnect

The SCardDisconnect function terminates a connection previously opened between the calling
application and a smart card in the target reader.

Syntax:
LONG SCardDisconnect (

in INT nDisposition
);

Parameters:
nDisposition [in]

Action to take on the card in the connected reader on close.

Value Meaning

SCARD_LEAVE_CARD Do not do anything special.

SCARD_RESET_CARD Reset the card.

SCARD_UNPOWER_CARD Power down the card.

Return value:
Please refer to the “List of Error Codes” section for details on return values.

11.9 SCardReleaseContext

The SCardEstablishContext function releases the handle to the USB Service.

Syntax:
VOID SCardReleaseContext ();

Return value:
Please refer to the “List of Error Codes” section for details on return values.



Android CCID Library User Manual

Page 18 of 29

11.10 SCardReconnect

The SCardReconnect function reestablishes an existing connection between the calling application and
a smart card.

Syntax:
LONG SCardReconnect(

__in INT nMode,
__in INT nPreferredProtocols,
__in INT nInitialization

);

Parameters:
nMode [in]

Flag that indicates whether other applications may form connections to this card.

Value Meaning

SCARD_SHARE_EXCLUSIVE This application will not share this card with other applications.

nPreferredProtocols [in]
Bitmask of acceptable protocols for this connection. Possible values may be combined with
the OR operation. The value of this parameter should include the current protocol. Attempting to
reconnect with a protocol other than the current protocol will result in an error.

Value Meaning

SCARD_PROTOCOL_T0 T=0 is an acceptable protocol.

SCARD_PROTOCOL_T1 T=1 is an acceptable protocol.

SCARD_PROTOCOL_Tx If the protocol of the card is not known this value can be used so
that this is the OR of above two protocol values.



Android CCID Library User Manual

Page 19 of 29

nInitialization [in]
Type of initialization that should be performed on the card.

Value Meaning

SCARD_LEAVE_CARD Do not do anything special on reconnect.

SCARD_RESET_CARD Reset the card (Warm Reset).

SCARD_UNPOWER_CARD Power down the card and reset it (Cold Reset).

Return value:
Please refer to the “List of Error Codes” section for details on return values.

11.11 SCardGetStatusChange

The SCardGetStatusChange function blocks execution until the current state of the card in a specific reader
changes.

The caller supplies maximum amount of time (in milliseconds) or WinDefs.INFINITE to wait infinitely for
the state change to occur. The SCARD_READERSTATE array can hold only one value, since only one
reader per instance is supported currently. The object to the SCARD_READERSTATE class
(rgReaderStates) carries the current state of the reader in nCurrentState member. The function returns when
there is a change of state, having filled in the nEventState member of rgReaderStates appropriately.

Syntax:
LONG SCardGetStatusChange (
__in LONG lTimeout,
__in/out SCARD_READERSTATE [] rgReaderStates,
__in INT nReaders

);



Android CCID Library User Manual

Page 20 of 29

Parameters:
lTimeout [in]

The maximum amount of time in milliseconds to wait for a state change to occur. A value of zero
causes the function to return immediately. A value of WinDefs.INFINITE causes this function to wait
infinitely for the state change to occur.

rgReaderStates [in, out]
SCARD_READERSTATE objects that specify the reader to watch, and that receive the result.

nReaders [in]
The number of elements in the rgReaderStates array. Currently we support only one reader hence this

value should always be set to one.

Return value:
Please refer to the “List of Error Codes” section for details on return values.

11.12 SCardGetAttrib

The SCardGetAttrib function retrieves the current reader attributes for the given handle. It does not affect

the state of the reader, driver, or card.

Syntax:
LONG SCardGetAttrib (

__in/out SCARDATTRIBUTE attribute
);

Parameters:
attribute [in]

An Object of the class SCARDATTRIBUTE

Return value:
Please refer to the “List of Error Codes” section for details on return values.



Android CCID Library User Manual

Page 21 of 29

12.0 Class Definition

SCardIOBuffer

public class SCardIOBuffer{
__in byte[] abyInBuffer;
__in int nInBufferSize;
__out byte[] abyOutBuffer;
__in int nOutBufferSize;

__out int nBytesReturned;
}

byte[] abyInBuffer
Buffer of data sent to the card/reader

int nInBufferSize
The command length, in bytes, of the abyInBuffer parameter.

byte[] abyOutBuffer
Buffer of data returned from card/reader

int nOutBufferSize
The Max length, in bytes, of the abyOutBuffer parameter

int nBytesReturned
The actual length, in bytes, of the data returned from the reader.



Android CCID Library User Manual

Page 22 of 29

SCardState

public class SCardState{
__out String szReader;
__out int nState;
__out int nProtocol;
__out byte[] abyATR;
__out int nATRlen;

}

String szReader
Name by which the currently connected reader is known

int nState
Current state of the smart card in the reader. Upon success, it receives one of the following state
indicators

Value Meaning

SCARD_ABSENT There is no card in the reader.

SCARD_PRESENT There is a card in the reader, but it has not been moved into position
for use.

SCARD_SWALLOWED There is a card in the reader in position for use. The card is not
powered.

SCARD_POWERED Power is being provided to the card, but the reader driver is unaware
of the mode of the card.

SCARD_NEGOTIABLE The card has been reset and is awaiting PTS negotiation.

SCARD_SPECIFIC The card has been reset and specific communication protocols have
been established.



Android CCID Library User Manual

Page 23 of 29

int nProtocol
Current protocol, if any. The returned value is meaningful only if the returned value of nState is
SCARD_SPECIFICMODE.

Value Meaning

SCARD_PROTOCOL_RAW The Raw Transfer protocol is in use.

SCARD_PROTOCOL_T0 The ISO 7816/3 T=0 protocol is in use.

SCARD_PROTOCOL_T1 The ISO 7816/3 T=1 protocol is in use.

byte[] abyATR
A 32-byte buffer that receives the ATR string from the currently inserted card, if available.

int nATRlen
On input, supplies the length of the abyATR buffer. On output, receives the number of bytes in the
ATR string (32 bytes maximum)



Android CCID Library User Manual

Page 24 of 29

SCARD_READERSTATE

public class SCARD_READERSTATE{
__in String szReader;
__in byte [] pvUserData;
__in int nCurrentState;
__out int nEventState;
__out int nAtr;
__out byte [] abyAtr = new byte[36];

}

String szReader
Name by which the currently connected reader is known

byte [] pvUserData
Not used by the smart card subsystem. This member is used by the application.

int nCurrentState;
Current state of the reader, as seen by the application. This field can take on any of the following
values, in combination, as a bitmask.

Value Meaning

SCARD_STATE_UNAWARE The application is unaware of the current state, and would like
to know. The use of this value results in an immediate return of
the current state of the reader.

SCARD_STATE_UNAVAILABLE The application expects that this reader is not available for use.
The use of this value results in an immediate return of the
current state of the reader causing a state change.

SCARD_STATE_EMPTY The application expects that there is no card in the reader. The
use of this value results in return if there is a state change to
SCARD_STATE_PRESENT.

SCARD_STATE_PRESENT The application expects that there is a card in the reader. The
use of this value results in return if there is a state change to
SCARD_STATE_ EMPTY.



Android CCID Library User Manual

Page 25 of 29

int nEventState;
Current state of the reader, as known by the smart card resource manager. This field can take on any
of the following values, in combination, as a bitmask.

Value Meaning

SCARD_STATE_CHANGED There is a difference between the state believed by the
application, and the state known by the resource manager.
When this bit is set, the application may assume a significant
state change has occurred on this reader.

SCARD_STATE_UNKNOWN The given reader name is not recognized by the resource
manager.

SCARD_STATE_UNAVAILABLE The actual state of this reader is not available.

SCARD_STATE_EMPTY There is no card in the reader.

SCARD_STATE_PRESENT There is a card in the reader.

int nAtr;
Number of bytes in the returned ATR.

byte [] abyAtr

ATR of the inserted card, with extra alignment bytes.



Android CCID Library User Manual

Page 26 of 29

SCardAttribute

public class SCardAttribute{
__in int nAttrId;
__out int nAttrLen;
__out byte[] abyAttr;

}

int nAttrId
Identifier for the attribute to get. The following table lists possible values for nAttrId. These values are
read-only. Note that vendors may not support all attributes. The value for each definition can be got
from the WinDefs class. E.g WinDefs.SCARD_ATTR_ATR_STRING

Value Meaning

SCARD_ATTR_ATR_STRING Answer to reset (ATR) string.

SCARD_ATTR_CHANNEL_ID DWORD encoded as 0xDDDDCCCC,
where DDDD = data channel type and CCCC =
channel number:

 The following encodings are defined
for DDDD:

 0x20 USB; CCCC is device number.

SCARD_ATTR_CURRENT_BWT Current block waiting time.

SCARD_ATTR_CURRENT_CLK Current clock rate, in kHz.

SCARD_ATTR_CURRENT_CWT Current character waiting time.

SCARD_ATTR_CURRENT_D Bit rate conversion factor.

SCARD_ATTR_CURRENT_EBC_ENCODING Current error block control encoding.
0 = longitudinal redundancy check (LRC)
1 = cyclical redundancy check (CRC)

SCARD_ATTR_CURRENT_F Clock conversion factor.

SCARD_ATTR_CURRENT_IFSC Current byte size for information field size card.

SCARD_ATTR_CURRENT_IFSD Current byte size for information field size
device.



Android CCID Library User Manual

Page 27 of 29

SCARD_ATTR_CURRENT_N Current guard time.

SCARD_ATTR_CURRENT_PROTOCOL_TYPE DWORD encoded as 0x0rrrpppp where rrr is
RFU and should be 0x000. pppp encodes the
current protocol type. Whichever bit has been
set indicates which ISO protocol is currently in
use. (For example, if bit zero is set, T=0
protocol is in effect.)

SCARD_ATTR_CURRENT_W Current work waiting time.

SCARD_ATTR_DEFAULT_CLK Default clock rate, in kHz.

SCARD_ATTR_DEFAULT_DATA_RATE Default data rate, in bps.

SCARD_ATTR_DEVICE_FRIENDLY_NAME Reader's display name.

SCARD_ATTR_DEVICE_SYSTEM_NAME Reader's system name.

SCARD_ATTR_DEVICE_UNIT Instance of this vendor's reader attached to the
computer. The first instance will be device unit
0, the next will be unit 1 (if it is the same brand
of reader) and so on. Two different brands of
readers will both have zero for this value.

SCARD_ATTR_ICC_INTERFACE_STATUS Single byte. Zero if smart card electrical contact
is not active; nonzero if contact is active.

SCARD_ATTR_ICC_PRESENCE Single byte indicating smart card presence:
0 = not present
1 = card present but not swallowed (applies
only if reader supports smart card swallowing)
2 = card present (and swallowed if reader
supports smart card swallowing)
4 = card confiscated.

SCARD_ATTR_ICC_TYPE_PER_ATR Single byte indicating smart card type:
0 = unknown type
1 = 7816 Asynchronous
Other values RFU.

SCARD_ATTR_MAX_CLK Maximum clock rate, in kHz.

SCARD_ATTR_MAX_DATA_RATE Maximum data rate, in bps.

SCARD_ATTR_MAX_IFSD Maximum bytes for information file size device.



Android CCID Library User Manual

Page 28 of 29

SCARD_ATTR_POWER_MGMT_SUPPORT Zero if device does not support power down
while smart card is inserted. Nonzero otherwise.

SCARD_ATTR_PROTOCOL_TYPES DWORD encoded as 0x0rrrpppp where rrr is
RFU and should be 0x000. pppp encodes the
supported protocol types. A '1' in a given bit
position indicates support for the associated ISO
protocol, so if bits zero and one are set,
both T=0 and T=1 protocols are supported.

SCARD_ATTR_VENDOR_IFD_SERIAL_NO Vendor-supplied interface device serial number.

SCARD_ATTR_VENDOR_IFD_TYPE Vendor-supplied interface device type (model
designation of reader).

SCARD_ATTR_VENDOR_IFD_VERSION Vendor-supplied interface device version
(DWORD in the form
0xMMmmbbbb whereMM = major
version, mm = minor version, and bbbb = build
number).

SCARD_ATTR_VENDOR_NAME Vendor name.

int nAttrLen
Length (in bytes) of the attribute value in the abyAttr buffer

byte[] abyAttr
Buffer that supplies the attribute whose ID is supplied in nAttrId



Android CCID Library User Manual

Page 29 of 29

13.0 List of Error Codes

ERROR CODE VALUE

SCARD_S_SUCCESS 0x00

List of Error values http://msdn.microsoft.com/en-us/library/ms936965.aspx


