s 2CM

MCard DLL API Specification

Version No 1.12

IND.COMMONTOOLS-

M.MCDLL.MANUAL.VER1.12.doc Version 1.12 Page 1 of 1

MCard DLL API Specification

Version History

=8 SCM

MILEDCRFRTERE

Date Version Description of Changes Author
Sep 06,2002 | 1.0 Initial version Simon Peter
Feb 17,2003 | 1.1 All references to Infenion have been replaced Simon Peter
with Infineon.
Feb 20, 2003 | 1.2 The page references in the contents section Simon Peter
were corrected
Feb 22,2003 | 1.3 Added section that lists the devices supported Calai Bhoopathi
by this API
May 13, 2003 | 1.4 Sec 9.1.1 — More description added to the Simon Peter
MCardlnitialize function.
Sec 9.2.1 — Description of the McardShutdown
API has been updated
July 3, 2003 1.6 Added description for a new API Simon Peter
MCardWaitForCardState
Sec 9.1.1 — Description of the MCardInitialize
function has been updated.
Sec 9.2.1 — Description of the McardShutDown
API has been updated
January 27, 1.7 Added section on SLE4404 card. Modified Sudharsanan
2004 Verify PIN and error code sections to reflect
changes needed for SLE4404 card.
April 2,2004 1.8 Updated error codes returned by APIs Sudharsanan
Sec 11.3 — Description of SLE4432/SLE4442
cards updated.
Sec 9.3 — Description of McardConnect API has
been updated.
June 4,2004 | 1.9 Sec 9.4 - — Description of McardDisconnect APl | Vidhya
has been updated.
November 1.10 Sec 9.8.1 — Description of McardWriteMemory Binu Jacob
10, 2006 API has been updated.
Added new APIs in Sec 9.18 to Sec 9.21
January 24, 1.1 Sec 4.0 has been updated. Binu Jacob
2007
March 26, 1.12 Sec 9.21.1 — Description of Binu Jacob
2008 MCard4436BlowFuseOnOff API has been
updated.
Sec 4.0 has been updated.
Sec 11.3.11 has been updated.
IND.COMMONTOOLS- VER1.12 Page 2 of 2

M.MCDLL.MANUAL.VER1.12

MCard DLL API Specification

=8 SCM

MILEDCRFRTERE

Contents
IO DR 14 Yo 11T 1 'Y o 6
2.0 Reference DOCUMENLScoiiiiiiiiiiiiiieernir s s e s s s smms s e e e s s ea s mmnnne e e s s eesnnnnnnsnnn 6
3.0 Terms and ABDBreviations ... e (]
50 0T & == Ve [T 3RS W o Yo =Y o P 7
5.0 Introduction to MCard APL.......... .. s 8
6.0 MCard APl DeSign OVEIVIEWciccceiiiiiiiminiiissssisssss s ssss s ssss s s sss s s sns s s s ss s s s ssnnsss 9
7.0 Features of MCard APl i rsssemr s msms e e s s smmmn e e e s e senennnnnnn 10
8.0 MCard APIS Data TYPeS....ccceirrrmrrrrrrimmrririsnerssssssmsesssssss s e s s sssss e s s s sssms e s sss s sesssssnsesssssnnsesssssnnens 1
8.1 MCARDCONTEXT ...itiiieiiitiiee e s ettt e e ettt e e e e e ttee e e e e et te e e e s aasb e e e e e sstteeessasseeeeeassaeeessnsneeaeeenntnnannsn 11
8.2 MCARDHANDLEttt ettt e et e e s et e e e e ea b e e e e s e e eeeeante e e e s anneeaeeentaaaeean 11
8.3 MCARD-FEATURES ..ottt ettt e e e sa e e s s e e e e entaeee s snnaee e e e ennaeeeeenn 11
8.4 MCARD_MEMORY ...ttt ettt e sttt e e e s ettt e e e e ea bt e e s et e e e e e s e e ee s annae e e e e ennaeeeeenn 12
LSS 1Y (07 I | PSP 12
S G B 1Y (7 Y o I O - PSP 13
8.7 MCARD_COUNTER.... .ottt ettt e s et e e e e sttt e e e s e e ee e e ntaeeessnsaeeeeeennaeeeeean 13
L= 20 N o K== q o o =T =Y o I ¢}V L 14
9.1 MCArdINILIALIZE ...ttt e e e e e e e et e e e e e e e e s e n e e eeaeeeeaeeaannnnnee 14
9.1.1 (1YY ol 4] o) o] o SRRSO 14
9.1.2 Description of the Parameters...........cc.ooi e 14
9.1.3 = o RSP 14
9.14 SAMPIE COUE....eeiiiiiiiiie ettt ee e e e e e e e e e e e aeeeeeeeeeeeeannnnnens 14
S 0 |V (071 o 1S o TU] (o (01 o PSRRI 15
9.2.1 [T o o o1 (o] o P PP PP R UPPRPP 15
9.2.2 Description of the Parameters..............ovvviiiiiiiiiiie e 15
9.2.3 =] (1] 15
9.24 SAMPIE COUR.....eitiiii et e et e e e ean e e e s enne e e e e eane 15
S IR T |V (@2 o [0 o1 o =Y o S 16
9.3.1 (1YY ol 4] o) o] o SRRSO 16
9.3.2 Description of the Parameters..............ouveiiiiiiiiiiiee e 16
9.3.3 SAMPIE COUE....ueiiiiiiiiie et e e e e e e e e e e e e e e e e eeeeeeeeeeannnnrens 16
9.34 = o RSP 17
S S |V (o= o | BT[] o T=To: (SRR 18
9.4.1 [T o o o1 (o] o PSPPI PP RPP 18
9.4.2 Description of the Parameters...........ccooiiiiiii e 18
9.4.3 = (D o RSP 18
9.4.4 SAMPIE COUR.....eiiiiii et e et e e e en e e e s aane e e e e eanee 18
S I T |V (0= {0 [T /N 1 o PSP 19
9.51 (1YY ol 4] o) o] o SRRSO 19
9.5.2 Description of the Parameters............c..ouvviiiiiiiiiiie e 19
9.5.3 =] (1] o 20
9.54 S F= T4 0] o] [N T o [T PP UPPRRPPPRP 20
S G |V (@71 {0 IS Y= 7N 114 o TSP 21
9.6.1 [T o o o1 (o] o PO PP UP PP RPP 21
9.6.2 Description of the Parameters...........ccooii e 21
9.6.3 = (] o RSP 21
9.7 MCArdREAAMEMOIYeiiiiiiiiie ettt e e e st e e e sa e e s s et eeeenteeaesannneeeeesnneeeeeann 23
9.71 (1YY ol 4] o) o] o SRRSO 23
9.7.2 Description of the Parameters..........c.c..ouvviiiiiiiiiiiiee e 23
IND.COMMONTOOLS- VER1.12 Page 3 of 3

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.7.3 = (] o RSP 23
9.7.4 ST T g 0] o] [N T o [T PP PP RPPPPPN 23
9.8 MCArdWItEMEIMOIYeeeiieeiiieee ettt et e e e st e e e et e e e e enbe e e e s snnneeeeeennteeeeann 24
9.8.1 (1YY ol 4] o) o] o O RRRUUUPSRRPP 24
9.8.2 Description of the Parameters...........cc.ooiiiiii e 24
9.8.3 =] (1] S 24
9.84 SAMPIE COUE....euiiiiiiiiie et e e e e e e e e e e e s aeeeeeeeeeeeeannnnrees 24
9.9 McardSetMemoryWriteProteCtion.............cooi i 25
9.9.1 [1=T o o o1 (o] o PO PP PP PP 25
9.9.2 Description of the Parameters..............ouvveiiiiiiiiiiee e 25
9.9.3 = o RSP 25
994 SAMPIE COUE....euiiiiiiieie e et e e e e e e e e e e s eeeeeeeeeeeenennnrees 25
9.10 McardSetMemoryReadProteCtion............oocuiiiii i 26
9.10.1 Description of the Parameters............ccuuuumiiiiiiiiic e 26

1S TR0 0 {1 (1 | o SRRSO 26
9.1 McardReadMemOryStatusooi i 27
L 20t I I B B 1=~ o T [PP PP PR PPPPIN 27
9.11.2 Description of the Parameters............ccuuuuuiiiiiiiiic e 27

1S TRt I O T {1 (1 o SRS 27
9.11.4 SAMPIE COUE....coiiiiiiii it e ettt ee e e e e e e e e e et eeeeeaeeeeaeeaennnnees 27
9.11.5 Status byte INterpretation ... 27
9.12 Y Tor= T e A=Y 1 | PSR SR 28
L 2 B B 1= o T [PP PP PP P PRPPPPPPIN 28
9.12.2 Description of the Parameters...........cccuuuuiiiiiiiiiic e 28

1S TR 7 T {1 (1 o SRR 28
9.12.4 SAMPIE COUR.......eiiii ittt e st e e eab bt e e e e et e e e eabbe e e e s sanbeeeeeaanee 28
9.13 MCardChangGEPIN.coo et e e s e e e s snnae e e e ennreeeeean 29
1S TR I Tt B B 1Y Tod 4 o) o] o PP RR TP 29
9.13.2 Description of the Parameters............ccuuuuiiiiiiiiiic e 29

LS TR TR T (= (14 o SRR SRRN 29
9.13.4 SAMPIE COUR....ooiiiiiii it e et ee e e e e e e e e e et e e e eeaeeeeeeeeannnnees 29
9.14 McardChalleNgERESPONSE.uiiiiiiiiee ettt s e e 30
LS 2 B B 1= o o [o P PSP PP PRRPPPPPPN 30
9.14.2 Description of the Parameters.............c.uiiiiiiiii e 30

LS Bt T (= (1 o PSR RRPSSRN 30
0144 SAMPIE COUR.......eiiii ittt e st e e e eab bt e e s e et e e e aabbe e e e s sanneeeeeaanee 30
9.15 Y [oz= T o 1 T=Te (U T {07 TU 4 (=Y SRR 31
9.15.1 DESCHPION. ...eteeiiiiee et e e e e e e e e ee e e e e e e e e et ab e e e e e e e e e eeeeaannnraes 31
9.15.2 Description of the Parameters............ccuuuuiiiiiiiiiic e 31

1S TR o TR T {1 (1 o SRR 31
0154 SAMPIE COUR.......eeiiiiieiee ettt e e eab et e e s e et e e e eabbe e e e s sanaeeeeeaanee 31
9.16 Y o= o NS (@ o TH] | (= SRR 32
L TG TR B B 1= o o] P PP UPPPPRTPPPPPPIN 32
9.16.2 Description of the Parameters............ccuuuviiiiiiiiii e 32

LS IR TRC T (= (1 o USRS 32
9.17 MCardWaitFOrCardStatec.uuiii i eeee s 33
1S TR I A0t B B 1Y Tod 4 o) o] TSP RR TSRO 33
9.17.2 Description of the Parameters............ccuuuueiiiiiiiiic e 33

1S TR A0 T {1 (1 o SR 33
9.18 MCardVerifyONOFco ettt e s e e e e e e e s sare e e e e ennreaaeean 34
L IR S R B B 1= o o] P PP PP PP PP P PRPTPPPPN 34
9.18.2 Description of the Parameters............ccuuuuiiiiiiiiiic e 34

1S TR < TR T {1 (1 o SRR 34
9.18.4 SAMPIE COUR.....oiiiiiii it e et ee e e e e e e e e e et e e e eeeeeeeeeeeennnnees 34
9.19 MCArdREAAFUSE.......coiiiiiiie ettt et e et e e e e e e e snbeee e s snnaeeeeeenneeeaeean 35
9.19.1 DESCHIPLON. ...eeeeiieieeee et e e e e e e e e e eeee e e e e e e e e e e eaabeeeeeaeaeeeeeeeannnnaes 35
9.19.2 Description of the Parameters.............cuuoiiiiiiiii e 35

1S TR S TR T {1 (1 o SRR 35
IND.COMMONTOOLS- VER1.12 Page 4 of 4

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.19.4 SAMPIE COUR....coiiiiiiii it e et ee e e e e e e e e et e e e e e e e e e eeeeaennnnees 35
9.20 MCArdBIOWFUSE ...ttt e e e e e e e et r e e e e e e e e e e e eeeaaaaeeennn 36
9.20.1 DESCHPLION. .. uteeiieieeee ettt e e e e e e e e e e et eeee e e e e e e e e e e aabeaaeeaeaeeeeeeeannnnae 36
9.20.2 Description of the Parameters............ccuuuuiiiiiiiiiic e 36

LS 20 R T {1 (1 o SRR 36
9.20.4 SAMPIE COUR......uiiiiiieeii ettt e e s et e e eab et ee s e et e e e eabbe e e e s aanneeeeeaanee 36
9.21 MCard4436BIoWFUSEONORT.........oiiiee e s 37
LS 02 I B B 1= o T [o P PP U PP P PRPPPPPPN 37
9.21.2 Description of the Parameters.............cuuoiiiiiiiii e 37

LS 02 G T (= (1 o PSPPSR 37
9.21.4 SAMPIE COUR....coiiiiiiie it e ettt ee e e e e e e e e e ettt e e e e e e e e e eeeeaennnnees 37
10.0 N3] 1= 38
101 Y (0= o I o I = (o] g 7o 1= PSRRI 38
10.2 Memory Cards SUPPOITEAc.uuiiieiiiiiee ettt e e e et ee e ennae e e e e ennreeae e s 39
10.3 4 o = |5 LSRR 40
10.4 PIN IDS ..ttt ettt ettt e et e et e e e s et e e e e e et ae e e e e et abe e e e e aabre e e e e naae e e e e treeeeeanaeeeeeenraaaeean 40
11.0 N 2 1= G = 41
111 Memory card StaNAArdSccuiiie i ee s 41
11.2 Memory card ProtOCOIScoiueiiie it ae s 41
11.2.1 TWO-WIr€ ProtOCOL ...t e e e e e e e e e e e e e e e e annnens 41
11.2.2 Three-Wire ProtOCOL............uuuuiieiiiee e e e e e e e e e aannens 41
(V2R T | (O o] (] (o oo | PP PPPRPPRTPPPPN 41
11.2.4 Bit1eVel PrOtOCOLcoi it e e 41
11.3 Special features in various MemOry Cards...........cueieiiiiiiiiiniiiie e 42
T1.3.1 SLE 4432, e e e e e —ea e e e e e e e eateaaeeannneaeeanes 42
T1.3.2 SLE Q442 ...t ee e e e e e e e e n e eee e e nareaeeane 42
(I R T I I USSP RRRRPN 43
11,304 SLE 4428 ...ttt e et ee e e te e e e e n e e ee e e nnneeeeanne 43
11.3.5 AT24C01A/02/04/08/16/32/64 /128 /256 /512 .ooeeeeeeeieeeee e 44
(I N ST N I < 1T O L X TSP SRRPSRPN 45
I A N I < T O 0 PSRRI 47
T1.3.8 SLEA4DBcoioociieiee ettt e e et e e e e e e et e e e —ea e e e reaeeenteeaeeananeaeeane 50
(I R T I | SR RRRSPN 51
(I R T | It T 1 2P SRPN 52

T T e s ¥ 1 USSR SRRN 53
IND.COMMONTOOLS- VER1.12 Page 5 of 5

M.MCDLL.MANUAL.VER1.12

MCard DLL API Specification

1.0

Introduction

SCM

MILEDCRFRTERE

This document is for application developers who want to use the MCard API to interface memory
cards in their application as well as for those who need to implement memory card DLL for their

readers.

g
o

| Ry Sy

Reference Documents

ISO/IEC 7816-1 1987(E) Standard
ISO/IEC 7816-2 1988(E) Standard
ISO/IEC 7816-3 1997(E) Standard
ISO/IEC 7816-4 1995(E) Standard
ISO/IEC 7816-5 1994(E) Standard
ISO/IEC 7816-6 1996(E) Standard

ISO/IEC 7816-10 1999(E) Standard

3.0 Terms and Abbreviations

Memory Cards Synchronous cards mainly used for storage of Data — Phone Cards,

Health cards, etc.

Protocol

The type of transmission followed by the Memory card — 2 Wire, 3 Wire,
IIC, etc.

PIN / Security code

The Personal Identification number (Similar to password) given to the
user of the Memory card for security reasons.

ISO PIN Contacts

The Contacts of the smart card with the interface device as described in
ISO 7816 (C1 to C8)

ATR

Answer to Reset

PC/SC

The standard of interface for Smart card reader drivers

Infineon, ATMEL, Xicor,
Schlumberger

Some Memory card suppliers in the industry

SLE4442/32/18/28 Some of the Memory Cards supplied by Infineon
EEPROM Electrically erasable Programmable Read Only Memory
IND.COMMONTOOLS- VER1.12 Page 6 of 6

M.MCDLL.MANUAL.VER1.12

MCard DLL API Specification

4.0

=8 SCM

MILEDCRFRTERE

Readers Supported

The following devices from SCM Microsystems support the MCard API:

SCRx31 Smart Card Reader (Firmware Rev 3.0 and above)

SCR333 Internal Smart Card Reader

SCR335 USB Smart Card Reader

SCR338 Keyboard Smart Card Reader

SCR241 PCMCIA Smart Card Reader

SPRx32 Pinpad Reader

SPR336 Biometric Reader

SPR337 Biometric Reader

Elektra 331 Smart card Reader

Smart Terminal ST-2xxx (Cherry USB Smart card Reader)

SDI010 Contactless Reader (Memory card support is added in FW Ver7.07 and later)
SCR331-DI USB Contactless Reader (Memory card support is added in FW Ver7.07 and
later)

IND.COMMONTOOLS- VER1.12 Page 7 of 7
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

5.0 Introduction to MCard API

PC/SC has become the standard interface to smartcard readers and cards. Unfortunately, the current
implementation on Microsoft Windows supports T=0 and T=1 processor cards only. Memory cards
with their various protocols are unsupported.

However, in some cases, memory card offers cheaper solutions than processor cards, e.g. for storing
data where not much processing is needed. With special read and write PINs, they can also provide
protection for this data and with challenge response test, a user authentication is also possible. More
advanced cards provide decrement-only counters which makes them perfectly suited as secure debit
cards.

The demand for memory card support has lead to various vendor specific PC/SC driver extensions
where such cards are presented e.g. as T=0 cards and access becomes possible via special APDUs.
Another common solution is the support via the SCardControl() function with special parameters.
Unfortunately, an application has to implement all these different and incompatible methods for each
reader it wants to use.

The MCard API has been introduced to provide a reader independent memory card interface which is
still compatible with the existing PC/SC API. Thus existing application require only little modification
when they also want to support usage memory cards. Once they use the MCard API, they no longer
need to care about any device specific interfaces.

Furthermore, with the MCard API’s abstract interface it is not necessary for application developers to
fully care about any memory card specific protocol details. This will he handled internally in the API.
Of course, a generally understanding of the memory card that is used and its features is still required
on the part of the application developer.

Understanding this documentation requires background knowledge about the PC/SC API and
smartcards in general. DLL developers must also have detailed knowledge and datasheets of the
memory card they want to implement.

IND.COMMONTOOLS- VER1.12 Page 8 of 8
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

6.0 MCard API Design Overview

PC/SC Application

A A A
PC/SC AP, PC/SC API, PC/SC API,
Reader A Reader B Reader C
memory card memory card memory card
implementation implementation implementation
4 A 4 4

PC/SC Ressource Manager

The MCard API is placed in between the PC/SC application and the Resource Manager. The
application can still use all available PC/SC functionality to get the device information or monitor the
card state. However, for all memory card related functionality it uses the MCard APIs.

PC/SC Application

A
MCard API PC/SC AP
MCard APl (MCardApi.DLL)
MCard API MCard API
Module Module
interface interface
MCard APl Module for MCard API Module for
Reader A Reader B and Reader C
» Reader B and
Reader A specific Reader C specific
implementation implementation
\ 4
PC/SC Ressource Manager (WinSCard.DLL)
IND.COMMONTOOLS- VER1.12 Page 9 of 9

M.MCDLL.MANUAL.VER1.12

s 2CM

MCard DLL API Specification

7.0 Features of MCard API

e The most important aspect of the MCard API is its PC/SC compliance. It guarantees complete
PC/SC compliance and it has been built around the standard PC/SC layer. This enables the
application developer over MCard API to have full PC/SC compliance.

e The application can also use the memory card handle provided by the MCard API for his
usual PC/SC calls. This enables the application developer to integrate the application with the
MCard API.

e The application developer is free from knowing many of the card specific details. A lot of
those are internally handled by the Mcard API itself. However application developers are
expected to have a basic understanding of the card that they are interfacing through the
MCard API.

e The MCard API error codes are built around the standard PC/SC error codes. The errors
reported back by the MCard APlIs clearly indicate the type of error that has occurred. In some
cases, it gives extra information regarding the error, so that the application developer can
take the respective corrective action. Also wherever reasonable, the MCard API returns back
the standard error codes as such.

e The MCard API have been modelled around PC/SC calls wherever possible. This will enable
the application developers to understand the APIs and their functionality better.

IND.COMMONTOOLS- VER1.12 Page 10 of 10
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

8.0 MCard APIs Data Types

The following data type are used within the MCard API functions.
8.1 MCARDCONTEXT

This represents the context of the current MCard API session.

typedef SCARDHANDLE MCARDCONTEXT;
typedef MCARDCONTEXT* PMCARDCONTEXT;

8.2 MCARDHANDLE

This handle identifies the current connection to a card. It is also a valid PC/SC AP| SCARDHANDLE, SO
it can be used with some PC/SC functions, too.

typedef SCARDHANDLE MCARDHANDLE;
typedef MCARDHANDLE* PMCARDHANDLE;

8.3 MCARD-FEATURES

This structure gives the general features of the memory card.

typedef struct _ MCARD_FEATURES {

DWORD dwFlags,
BYTE bytMemoryZones,
BYTE byPINs,
BYTE byCounters,
BYTE byCRs
} MCARD_FEATURES, *PMCARD_FEATURES;
dwFlags
RFU
byMemoryZones

Number of memory zones. The first memory zone has the ID 0x00, the second the ID 0x01 and so on.
This is to used in functions like MCardReadMemory .

byPINs

Number of PINs. The first PIN has the ID 0x00, the second the ID 0x01 and so on. This is used in
functions like MCardverifyPin.

byCounters

Number of counters. The first counter has the ID 0x00, the second the ID 0x01 and so on. This is
used in functions like MCardSetCounter.

bCRs

Number of challenge-response tests. The first test in this array has the ID 0x1, the second the ID 0x2
and so on in functions like MCardChallengeResponse.

IND.COMMONTOOLS- VER1.12 Page 11 of 11
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

8.4 MCARD_MEMORY

This structure contains details about a memory zone of a memory card.

typedef struct _ MCARD_MEMORY {

DWORD dwFLags,
DWORD dwSize
} MCARD_MEMORY, *PMCARD_MEMORY;
dwFlags
RFU
dwSize

This is the size in byte of a memory zone.

8.5 MCARD_PIN

This structure contains details about a PIN of a memory card.

typedef struct _MCARD_PIN {
DWORD dwFlags,
BYTE bySize,
BYTE byRetries
} MCARD_PIN, *PMCARD_PIN;
dwFlags

RFU

bySize
This is the size of this PIN in byte.

byRetries
Number of trials left for this PIN.

IND.COMMONTOOLS- VER1.12 Page 12 of 12
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

8.6 MCARD_CR

This structure contains details about a challenge response authentication details supported by a
memory card.

typedef struct _ MCARD_CR {

DWORD dwFlags,
DWORD dwChallengelLen,
DWORD dwResponselLen,
BYTE byRetries
} MCARD_CR, *PMCARD_CR,;
dwFlags
RFU

dwChallengeLen
Length of challenge in bytes.

dwResponselLen

Length of respones in bytes.

byRetries

Number of trials left for this Challenge Response sequence.

8.7 MCARD_COUNTER

This structure contains details about a specific counter on the memory card.

typedef struct _ MCARD_COUNTER {

DWORD dwFLags
BYTE bySize;
DWORD dwUnits
} MCARD_COUNTER, *PMCARD_COUNTER;
dwFlags
RFU
bySize

Length of counter in bytes.

dwUnits

Units left in the counter.

IND.COMMONTOOLS- VER1.12 Page 13 of 13
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.0 APIs exposed by DLL

9.1 MCardlnitialize

9.1.1 Description

This API has to be called by the application before any other memory card API. This API can be
called with or without a memory card inserted into the reader. This API is used to set the reader into
the memory card mode of operation. Calling the MCardInitialize function for the second time without
calling the MCardShutdown function will lead to failure.

LONG MCardInitialize (
IN SCARDCONTEXT hScardContext,
IN LPCTSTR szReaderName,
OUT PMCARDCONTEXT phMCardContext,
OUT PDWORD pdwDllIVersion,
);

9.1.2 Description of the Parameters

e The hScardContext is the context handle obtained by the SCardEstablishContext by the
application with the Smart Card Resource Manager.

e The szReaderName is the reader name as given to the SCardConnect.

e The phMCardContext is a unique context that is returned by the DLL. This context is to
identify the application and is not of any significance to the application developer, other than
that it has to be used with the MCardShutdown API. However the application developer has to
pass a valid pointer for this parameter to the MCardInitialize call.

e The pdwDlIVersion will be filled with the current version of the DLL. This is also for reference
to the application developer so that he can correlate it with the memory cards supported by

the DLL.
9.1.3 Return
MCARD_S_SUCCESS The DLL successfully initialized
SCARD_E_NO_SERVICE The resource manager is not running

9.1.4 Sample code

/* ScardContext is the context obtained through SCardEstablishContext */
MCARDCONTEXT hMCardContext;

DWORD dwDLLVersion;

char szReader[] = “CCID SCM Microsystems Reader”;
LONG IReturn;

IReturn = MCardlInitialize (
ScardContext,

szReader,
&hMCardContext,
&dwDLLVersion

);

IND.COMMONTOOLS- VER1.12 Page 14 of 14
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

Note:

In case of firmware with auto reversal feature the reader in memory card mode will revert
back to ISO mode when the card is removed from the reader. Hence MCardinitialize has to be
called to set the reader back in memory card mode. In case the feature is not present, even when
the card is removed, the Reader remains in Memory card mode until MCardShutdown is called.
Please check Release Note of the corresponding Firmware to know if the feature exists.

9.2 MCardShutdown

9.2.1 Description

This API invalidates the DLL context given during a MCard Initialize. It also restores the reader from
memory card mode to the mode it was when MCardInitialize was called.

LONG MCardShutdown (
IN MCARDCONTEXT hMCardContext

);

9.2.2 Description of the Parameters
e hMCardContext is the DLL context supplied to the application during MCardInitialize

9.2.3 Return

MCARD_S SUCCESS The context successfully invalidated

9.2.4 Sample code
LONG IReturn;

IReturn = MCardShutDown (hMCardContext);

/* where hMCardContext is the context got in MCardlInitialize */

IND.COMMONTOOLS- VER1.12 Page 15 of 15
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.3 MCardConnect

9.3.1 Description

This API is similar to the standard SCardConnect except that it connects to a memory card. The API
actually performs a SCardConnect internally. The card handle MCARDHANDLE is returned to the
application developer which is the standard SCARDHANDLE. The application developer can use this
handle for further communication with the MCard APIls and also to perform card tracking and other
such routines through the Smart card resource manager.

Disclaimer

The MCardConnect in the “intelligent mode” performs DESTRUCTIVE tests with the card. This API
during its process of finding the card type writes / reads back the data from the card. Though the DLL
restores the card’s original state once the identification process in over, neither the power to the card
be interrupted, nor the card disturbed during the process. Since the process is prone to damage the
card, application developers are advised to go for intelligent mode only when such a need arises.

LONG MCardConnect (

IN MCARDCONTEXT hMCardContext,
IN DWORD dwConnectMode,

IN BYTE byCardType,

OUT PMCARDHANDLE phMCard

);

9.3.2 Description of the Parameters

e hMCardContext is the DLL context supplied to the application during MCardlInitialize

e The dwConnectMode chooses between the INTELLIGENT mode (read disclaimer above)
and FORCED_MODE mode, in which the application has to identify the card type to the DLL.

e If the dwConnectMode is set as INTELLIGENT mode then byCardType is ignored. But if the
dwConnectMode is set as FORCED_MODE, then the card type is passed in this.

e The DLL returns phMCard on successful connection to the memory card. This memory card
handle will have to be supplied in all further calls to the DLL like MCardReadMemory,
MCardWriteMemory etc.

9.3.3 Sample code

The intelligent card identification of the DLL is used.

DWORD dwConnectMode = INTELLIGENT_MODE
BYTE byCardType = 0x00;

MCARDHANDLE hMCard;

LONG IReturn;

IReturn =

MCardConnect (
hMCardContext, /* Obtained from MCardInitialize */
dwConnectMode,
byCardType,

IND.COMMONTOOLS- VER1.12 Page 16 of 16
M.MCDLL.MANUAL.VER1.12

MCard DLL API Specification

&hMCard
);

The card type is forced from the application.

LONG IReturn;

MCARDHANDLE hMCard;

DWORD dwConnectMode = FORCED_MODE;
BYTE byCardType = MCARDTYPE_SLE4432;

IReturn =

MCardConnect (
hMCardContext,
dwConnectMode,
byCardType,
&hMCard

9.3.4 Return

=8 SCM

MILEDCRFRTERE

/* A list of all supported cards with
values is provided in Annex A */

/* Obtained from MCardInitialize */

MCARD_S_SUCCESS The memory card is successfully connected to.
MCARD_E_UNKNOWN_CARD The memory card could not be identified.
MCARD_E_NOT_INITIALIZED MCardInitialize was not called successfully before this.

MCARD_W_REMOVED_CARD Card has been removed from the reader

Note:

McardConnect will return the error code MCARD_E_NOT _INITIALIZED if the reader is not in Memory

card mode.

IND.COMMONTOOLS- VER1.12

M.MCDLL.MANUAL.VER1.12

Page 17 of 17

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.4 McardDisconnect

9.4.1 Description

This API is similar to the SCardDisconnect. It disconnects a previously connected memory card as per
the requested disposition.

LONG McardDisconnect (
IN MCARDHANDLE hMCard,
IN DWORD dwDisposition

);

9.4.2 Description of the Parameters

¢ hMCard is the memory card handle obtained in the MCardConnect call.

e dwDisposition The type of disconnection similar to ScardDisconnect’s disposition parameter.
This parameter is no longer used and may be set to a default value of 0.

9.4.3 Return

MCARD_S_SUCCESS The memory card is successfully connected to.

9.4.4 Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */
LONG IReturn;

IReturn =
MCardDisconnect(
hMCard,
MCARD_EJECT_CARD

IND.COMMONTOOLS- VER1.12 Page 18 of 18
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.5 MCardGetAttrib

9.5.1 Description

This API returns the various attributes of the memory card and also certain configurations of the
DLL/reader. The data structures returned by the DLL for each attribute are specified in the Data
Structures section.

LONG McardGetAttrib (

IN MCARDHANDLE hMCard,
IN DWORD dwAittrld,

OUT LPBYTE pbaAttr,

IN OUT LPDWORD pcbAttrLen

);

9.5.2 Description of the Parameters

e hMCard is the card handle of the card that was connected to
o dwAttrld indicates the attribute requested. It may be

dwAttrib Value
MCARD ATTR TYPE 0x00
MCARD ATTR PROTOCOL 0x01
MCARD ATTR FEATURES 0x02
MCARD ATTR MEMORY 0x03
MCARD_ ATTR PIN 0x04
MCARD ATTR CR 0x05
MCARD ATTR COUNTERS 0x06
MCARD ATTR CLOCK 0x07
MCARD ATTR BIT ORDER 0x08
MCARD_ATTR_CONFIGURATION 0x09

o The MCARD_ATTR_TYPE will return the memory card type.
o The MCARD_ATTR_PROTOCOL will return the protocol of the memory card.

o The MCARD_ATTR_FEATURES will return the structure MCARD_FEATURES i.e

= DWORD dwFlags;
= BYTE byMemoryZones;
= BYTE byPINs;
= BYTE byCounters;
= BYTE byCRs;

o The MCARD_ATTR_MEMORY will return the MCARD_MEMORY structure i.e
= DWORD dwFLags;
= DWORD dwSize;

o The MCARD_ATTR_PIN will return a the structure MCARD _PIN i.e
= DWORD dwFlags;
= BYTE bySize;
= BYTE byRetries;

IND.COMMONTOOLS- VER1.12 Page 19 of 19

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

o The MCARD_ATTR_CR will return the structure MCARD_CR i.e

= DWORD dwFlags;
= DWORD dwChallengelLen;
= DWORD dwResponselLen;
= BYTE byRetries;
o The MCARD_ATTR_COUNTERS will return the structure MCARD_COUNTER i.e
= DWORD dwFLags;
= BYTE dwSize;
= DWORD dwUnits;

o The MCARD_ATTR_CLOCK returns the Ton = Toff that is used within the reader to
interface with the memory card.

o The MCARD_ATTR_BIT_ORDER returns the Bit order that is used within the reader
to interface with the memory card.

= LSB (Value = 0x00) — if the first bit sent/received has been forced by the
application developer to be considered as the least significant bit.

= MSB (Value = 0x01) — if the first bit sent/received has been forced by the
application developer to be considered as the most significant bit.

= DEFAULT (Value = OxFF) — if the application developer has not forced any bit
significance and the memory card reader intelligently identifies the bit
significance based on the protocol used.

o The CONFIGURATION attribute has been reserved for future use.

e The contents of pbAttr will contain the respective structure(s) or value.
e The contents of pbAttrLen will contain the size of the structure returned in pbAttr (if a
structure is returned) or the number of bytes (if a value is returned).

9.5.3 Return
MCARD_S_SUCCESS Successfully got the attribute
MCARD_E_NOT_IMPLEMENTED The MCardGetAttrib not implemented for this attribute

9.5.4 Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */

MCARD_FEATURES MCardFeatures;
DWORD dwLen;
LONG IReturn;

IReturn =

MCardGetAttrib (
hMCard,
MCARD_ATTR_FEATURES,
(unsigned char *) &MCardFeatures,
&dwLen

);

/* This will return the memory card features in the structure and in the dwlLen it returns the
sizeof (MCARD_FEATURES). */

IND.COMMONTOOLS- VER1.12 Page 20 of 20
M.MCDLL.MANUAL.VER1.12

s 2CM

MCard DLL API Specification

9.6 MCardSetAttrib

9.6.1 Description

This API will set the requested value to the attribute of interest. The clock rate has been set
considering all the cards that have been supported by the DLL. If the application developer is
comfortable with other values he can use this API to change it.

This API is also used to force the bit ordering to LSB / MSB or set it back to DEFAULT in which case
the reader will intelligently decide the bit ordering.

LONG McardSetAttrib (

IN MCARDHANDLE hMCard,
IN DWORD dwAttrld,

IN LPBYTE pbaAittr,

IN DWORD cbAttrLen

);

9.6.2 Description of the Parameters

e The hMCard is the memory card handle got during a valid MCardConnect
e The dwAttrib can take one of these values

dwAttrib Value
MCARD ATTR CLOCK 0x07
MCARD_ATTR BIT ORDER 0x08

o The MCARD_ATTR_CLOCK attribute is used to set the Ton=Toff used for interfacing
the memory card in the reader.

o The MCARD_ATTR_BIT_ORDER attribute can be set to one of these

= LSB (Value = 0x00) — if the first bit sent/received needs to be forced by the
application developer to be considered as the least significant bit.

= MSB (Value = 0x01) — if the first bit sent/received needs to be forced by the
application developer to be considered as the most significant bit.

= DEFAULT (Value = OxFF) — if the application developer does not force any bit
significance and accepts the memory card reader’s intelligent identification of
the bit significance based on the protocol used.

e The pbAttr contains the value to be set to the attribute.

e The cbAttrLen contains the number of bytes contained in pbAttr

9.6.3 Return

MCARD_S SUCCESS Successfully got the attribute
MCARD_E_READ_ONLY_ATTRIBUTE The MCardGetAttrib not implemented for this attribute

IND.COMMONTOOLS- VER1.12 Page 21 of 21
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */

BYTE byClock= 0x01;
LONG IReturn;

IReturn =

MCardSetAttrib (
hMCard,
MCARD_ATTR_CLOCK,
&byClock,
1

)i

[* This will set the clock to 1 microsecond and is advisable for IIC cards which can work in this clock */

IND.COMMONTOOLS- VER1.12 Page 22 of 22
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.7 McardReadMemory

9.7.1 Description

This API will read the requested bytes from the memory card. The buffer to store the bytes read is
supplied by the application layer. The address roll over, reading beyond the available memory and
other similar considerations are automatically taken care by the DLL and the appropriate error codes
returned.

LONG MCardReadMemory (

IN MCARDHANDLE hMCard,
IN BYTE bMemZone,

IN DWORD dwOffset,

IN LPBYTE pbReadBuffer,

IN OUT LPDWORD pbReadLen

);

9.7.2 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect

e bMemZone indicates the zone from which the data has to be read. For details on how the
various memory cards are divided into zones refer Annex A.

o dwOffset indicates the offset from which the reading has to take place.

¢ pbReadBuffer is the buffer supplied by the application layer where the bytes read are to be
stored.

e pbReadLen is the number of bytes to be read.

9.7.3 Return

MCARD_S_SUCCESS Successfully read all data
MCARD_W_NOT_ALL_DATA READ Could not read all data from card
MCARD_W_PIN_VERIFY_NEEDED Reading access requires a PIN verification.
MCARD_E_INVALID_MEMORY_RANGE Offset + length greater than size of the zone
MCARD_E_INVALID_MEMORY_ZONE_ID The specified memory zone ID is invalid.
MCARD_W_CARD_REMOVED Card has been removed from the reader.

9.7.4 Sample code
/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;
BYTE abyData [20];
DWORD dwlLen = 20;

IReturn =
MCardReadMemory (/* Reading 20 bytes from offset 0x80 in memory zone 0 */f
hMCard,
0,
0x80,
abyData,
&dwlLen

IND.COMMONTOOLS- VER1.12 Page 23 of 23
M.MCDLL.MANUAL.VER1.12

s 2CM

MCard DLL API Specification

9.8 McardWriteMemory

9.8.1 Description

This API is used to write data into the card’s memory. Certain cards have permanent write protection
mechanism and attempting a write on these bytes will fail.

LONG McardWriteMemory (

IN MCARDHANDLE hMCard,

IN BYTE bMemZone,

IN DWORD dwOffset

IN LPBYTE pbWriteBuffer,

IN OUT LPDWORD pcbWriteLen

);

9.8.2 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect

e bMemZone indicates the zone from which the data has to be written. For details on how the
various memory cards are divided into zones refer Annex A.

¢ dwOffset indicates the offset from which offset the writing has to begin. This offset can be
anywhere, even between pages, as the DLL will internally .

o pbWriteBuffer is the buffer supplied by the application layer where the bytes to be written are
stored.

e pcbWriteLen contains the number of bytes to be write.

9.8.3 Return

MCARD_S SUCCESS Successfully writen all data
MCARD_W_PIN_VERIFY_NEEDED Writing access requires a PIN verification.
MCARD_E_INVALID_MEMORY_RANGE Offset + length greater than size of the zone
MCARD_E_INVALID_MEMORY_ZONE_ID The specified memory zone ID is invalid.
MCARD_E_ERASURE_NEEDED Write not possible erasure to be done first
MCARD_W_PROTECTED_AREA Cannot write into Protected area
MCARD_W_CARD_REMOVED Card has been removed from the reader.

9.8.4 Sample code
/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;
BYTE abyData [10] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A};
DWORD dwLen = 10;
IReturn =
MCardWriteMemory (/* Writes the 10 values in the buffer abyData to offset 0x80 in
memory zone 0 */
hMCard,
0,
0x80,
abyData,
&dwLen
);
IND.COMMONTOOLS- VER1.12 Page 24 of 24

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

Note:
By default, the read back verification after each write is turned off in the DLL. It can be turned ON/OFF
by MCardVerifyOnOff API.

Disclaimer

In SLE4404 card, first four bits at byte address 10 are the error counter bits (PIN retries count).
Setting all these bits to zero will block the card. So application developers must be sure
enough before writing into these bits.

9.9 McardSetMemoryWriteProtection

9.9.1 Description

This API is used to set the write protection that is available in a few memory cards. This feature may
permanently write protect the bytes. The application developer has to make sure of the parameters
before calling this API.

LONG McardSetMemoryWriteProtection (
IN MCARDHANDLE hMCard,

IN BYTE bMemZone,

IN DWORD dwOffset,

IN OUT LPDWORD pbcLen

);

9.9.2 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect

e bMemZone indicates the zone from which the data has to be protected. For details on how
the various memory cards are divided into zones refer Annex A.

o dwOffset indicates the offset from which offset the protection has to begin.

e pcbLen contains the number of bytes to be write protected.

9.9.3 Return

MCARD_S SUCCESS Successfully protected all data
MCARD_W_PIN_VERIFY_NEEDED Protection access requires a PIN verification.
MCARD_E_INVALID_MEMORY_RANGE Offset + length greater than size of the zone
MCARD_E_INVALID_MEMORY_ZONE_ID The specified memory zone ID is invalid.
MCARD_W_CARD_REMOVED Card has been removed from the reader.

9.9.4 Sample code
/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;
DWORD dwlLen = 5;
IReturn =

MCardSetMemoryWriteProtection (

IND.COMMONTOOLS- VER1.12 Page 25 of 25
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

hMCard,
0x00,
0x10,
&dwlLen

);

/* This sample shows how to write protect 5 bytes, starting from offset 0x10 in memory zone 0 */

Disclaimer
The write protection feature can permanantly protect the data from being altered again. So
application developers must be sure enough before calling this API.

9.10McardSetMemoryReadProtection

Description
This API is used to set the read protection available in certain cards.

LONG McardSetMemoryReadProtection (
IN MCARDHANDLE hMCard,

IN BYTE bMemZone,

IN DWORD dwOffset,

IN OUT LPDWORD pbcLen

);

9.10.1 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect

¢ bMemZone indicates the zone from which the data has to be protected. For details on how
the various memory cards are divided into zones refer Annex A.

o dwOffset indicates the offset from which offset the protection has to begin.

¢ pcbLen contains the number of bytes to be write protected.

9.10.2 Return

MCARD_E_NOT_IMPLEMENTED Since at present the DLL does not support such cards this
API has been left unimplemented.

IND.COMMONTOOLS- VER1.12 Page 26 of 26
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.11 McardReadMemoryStatus

9.11.1 Description
This API will report the read/write protection status of the bytes.

LONG McardReadMemoryStatus (
MCARDHANDLE hMCard,

IN BYTE bMemZone,

IN DWORD dwOffset,

OUT PBYTE pbBuffer,

IN OUT LPDWORD pcbLen

);

9.11.2 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect

e bMemZone indicates the for which the status is to be known. For details on how the various
memory cards are divided into zones refer Annex A.

¢ dwOffset indicates the offset from which the status has to be reported

o pbBuffer is the buffer supplied by the application layer where the status i to be returned.

e pcbLen contains the number of bytes whose status is to be known.

9.11.3 Return

MCARD_S SUCCESS Successfully read the status
MCARD_W_CARD_REMOVED Card has been removed from the reader.

9.11.4 Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */
LONG IReturn;

BYTE abyData [10];

DWORD dwLen = 10;

IReturn =
MCardReadMemoryStatus (* Gets the status of 10 bytes from offset 0x80 in zone 0 */
hMCard,
0,
0x80,
abyData,
&dwlen

9.11.5 Status byte Interpretation

e Bit7 -Bit1:RFU.
e Bit 0 (LSB) : Write protection bit set for this data byte.

IND.COMMONTOOLS- VER1.12 Page 27 of 27
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.12McardVerifyPIN

9.12.1 Description

This API is used to verify the PIN from the user. This call has to be used to get write/read access to
the card/zones.

LONG MCardVerifyPIN (

IN MCARDHANDLE hMCard,
IN BYTE bPinNumber,

IN PBYTE pbBufferWithPIN,
IN BYTE pbclLen

);

9.12.2 Description of the Parameters

hMCard is the memory card handle returned on a successful call to MCardConnect
bPinNumber indicates the PIN which is to be verified

pbBufferWithPIN is the buffer containing the bytes of the PIN

pcbLen contains the number of bytes of the PIN

9.12.3 Return

MCARD_S_SUCCESS Successfully verified the PIN.
MCARD_E_INVALID_PIN_ID The specified PIN ID is invalid.
MCARD_W_PIN_VERIFY_FAILED The PIN verification failed.
MCARD_W_NO_PIN_ATTEMPTS_LEFT No PIN retries left in the card.
MCARD_W_CARD_REMOVED Card has been removed from the reader.
MCARD_E_BITORDER_CHANGED Bit Order has been changed from default.
MCARD_E_NOT_IMPLEMENTED This Feature is not implemented in the DLL.

9.12.4 Sample code
/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;
BYTE PINbuffer [3] = {0x73, 0x58, OxDE};
IReturn =
MCardVerifyPIN (* Verifies the PIN for SLE4442 */
hMCard,
0,
PINbuffer,
3

);

Important Note:

The verify PIN option in the case of SLE4404 cards on Memory code area (PIN1) will erase the
entire contents of user memory and also reset a bit in Memory counter area that results in the
decrement of the no. of times the user area can be erased. Even an incorrect PIN1 entry will
reset the bit in memory counter, decreasing the no. of times the user area can be erased.

Please ensure that before verifying PIN1 of SLE4404 card PINO is verified.

IND.COMMONTOOLS- VER1.12 Page 28 of 28
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.13McardChangePIN

9.13.1 Description
The application will use this API to change the current PIN to a new PIN.

LONG MCardChangePIN (
IN MCARDHANDLE hMCard,
IN BYTE bPinNumber,
IN PBYTE pbBufferWithOIdPIN,
IN BYTE cbOldLen
IN PBYTE pbBufferWithNewPIN,
IN BYTE cbNewLen

9.13.2 Description of the Parameters

hMCard is the memory card handle returned on a successful call to MCardConnect
bPinNumber indicates the PIN which is to be changed

pbBufferWithOIdPIN is the buffer containing the bytes of the old PIN

cbOldLen contains the number of bytes of the new PIN

pbBufferWithNewPIN is the buffer containing the bytes of the old PIN

cbNewLen contains the number of bytes of the new PIN

9.13.3 Return

MCARD_S_SUCCESS Successfully changed the PIN.
MCARD_E_INVALID_PIN_ID The specified PIN ID is invalid.
MCARD_W_PIN_VERIFY_FAILED The PIN verification failed.
MCARD_W_NO_PIN_ATTEMPTS_LEFT No PIN retries left in the card.
MCARD_W_CARD_REMOVED Card has been removed from the reader.
MCARD_E_NOT_IMPLEMENTED The feature is not implemented in the DLL.

9.13.4 Sample code
/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;
BYTE oldPINbuffer [3] = {Ox73, 0x58, OxDE};
BYTE newPINbuffer [3]={0x3D, 0xF3, 0x25};
IReturn =
MCardChangePIN (/* Changes the PIN for SLE4442 */
hMCard,
0,
oldPINbuffer,
3,
newPINbuffer,
3
);
IND.COMMONTOOLS- VER1.12 Page 29 of 29

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.14McardChallengeResponse

9.14.1 Description

This API implements the challenge response sequence supported by some secure memory cards.
Provision is provided to select the challenge ID for a challenge-response sequence.

LONG McardChallengeResponse (
IN MCARDHANDLE hMCard,
IN BYTE bChallengelD,
IN PBYTE pbChallengeBuffer,
IN BYTE cbChallengelen,
OUT PBYTE pbResponseBuffer,
OUT PBYTE cbResponselLen

9.14.2 Description of the Parameters

hMCard is the memory card handle returned on a successful call to MCardConnect
bChallengelD indicates the challenge ID for the current authentication.
pbChallengeBuffer is the buffer containing the challenge bytes

cbChallengelLen contains the number of bytes in the challenge buffer
pbResponseBuffer is the buffer where the response from the card will be stored
cbResponseLen contains the number of bytes in the returned response buffer

9.14.3 Return

MCARD_S SUCCESS Successfully writen all data
MCARD_E_INVALID_CHAL_RESP_ID The specified challenge ID is invalid.
MCARD_E_CHAL_RESP_FAILED The challenge response sequence failed.
MCARD_W_NO_CR_ATTEMPTS_LEFT No challenge response retry left.
MCARD_W_CARD_REMOVED Card has been removed from the reader.

9.14.4 Sample code
/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;
BYTE ChallengeBuffer [8] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07}; /* Usually a
random number */
BYTE ResponseBuffer [3];
IReturn =
MCardChallengeResponse (/* Authentication in SLE4436 */
hMCard,
0, /* Authentication with Key 1 */
ChallengeBuffer,
8,
ResponseBuffer,
3
);
IND.COMMONTOOLS- VER1.12 Page 30 of 30

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.15McardDeductCounter

9.15.1 Description

This function is used to decrement a counter on the card. (SLE4406/SLE4436/SLE5536 only).

LONG MCardDeductCounter(
IN MCARDHANDLE hMCard,
IN BYTE bCounterlD,

IN DWORD dwUnits

)i

9.15.2 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect
e bCounterID indicates the counter ID where the decrement will be performed
e dwUnits is the number of units to be decremented.

9.15.3 Return

MCARD_S_SUCCESS Successfully writen all data
MCARD_W_CARD_REMOVED Card has been removed from the reader.

9.15.4 Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */
LONG IReturn;

IReturn =

MCardDeductCounter(/* To decrement 5 units from the counter in SLE4436 */
hMCard,
0,
5

Disclaimer

The decrement option in SLE4406, SLE4436 and SLE5536 cause permenant decrement in the
value of the counter. Values once decremented are irreversibly lost. So the application
developer has to use this API only after through understanding of the purpose.

IND.COMMONTOOLS- VER1.12 Page 31 of 31
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.16 McardSetCounter

9.16.1 Description

This function is used to set the counter on the card to some defined bit pattern.

LONG MCardSetCounter(
IN MCARDHANDLE hMCard,
IN BYTE bCounterlD,
IN PBYTE pbCounter,
IN BYTE cbCounterLen

)i

Explanation of the Parameters

Argument Type Meaning

hMCard MCARDHANDLE The card handle of the card that was connected to
bCounterID BYTE The counter to be decremented

pbCounter PBYTE Buffer containing the target bit pattern for the counter
cbCounterLen BYTE Number of bytes forming the counter

9.16.2 Description of the Parameters

hMCard is the memory card handle returned on a successful call to MCardConnect
bCounterlD indicates the counter ID where the values will be set

pbCounter is the buffer containing the bit pattern to be stored in the counter.
pbCounterLen is the length in bytes of the counter.

9.16.3 Return

MCARD_E_NOT_IMPLEMENTED At present the DLL does not support this API

IND.COMMONTOOLS- VER1.12 Page 32 of 32
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.17 MCardWaitForCardState

9.17.1 Description

This function is used to monitor the card state from the application.

LONG MCardWaitForCardState(
IN MCARDCONTEXT hMCardContext,
IN DWORD dwExpectedCardState,
OUT DWORD* pdwCardState,
IN DWORD dwTimeOut

)i

Explanation of the Parameters

Argument Type Meaning

hMCardContext MCARDCONTEXT | The context given during MCardlInitialize
dwExpectedCardState | DWORD The card state that is expected

pdwCardState PDWORD The actual card state

dwTimeOut DWORD The maximum waiting time for the expected state.

9.17.2 Description of the Parameters

o hMCardContext is the memory card context returned on a successful call to MCardInitialize
o dwExpectedCardState indicates the expected card state.

o SCARD_STATE_PRESENT

o SCARD_STATE_EMPTY
o pdwCardState is the buffer containing the bit pattern to be stored in the counter.

o SCARD_STATE_PRESENT

o SCARD_STATE_EMPTY

NOTE: These a bit flags, so the app must check if the bits are

set.
WRONG : if (SCARD_STATE PRESENT == *pdwState) { ... }
RIGHT: if ((*pdwState) & SCARD STATE PRESENT) { ... }

o dwTimeOut is the maximum waiting time for the expected state that the DLL should wait
before returning the current state.
o 0 -return immediately
o INFINITE - return only when the expected state is reached
o Any other value — timeout in milliseconds.

9.17.3 Return

MCARD_E_INVALID_PARAMETER One of the parameters is invalid
MCARD_E_INTERNAL_ERROR An internal error has occurred in the DLL
MCARD_W_ABORTED The operation was aborted by a call to MCardShutdown
MCARD_W_TIMEOUT Timeout occurred while waiting for expected state
IND.COMMONTOOLS- VER1.12 Page 33 of 33

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification
9.18 MCardVerifyOnOff

9.18.1 Description

e This APl is used to turn ON/OFF the verification after writing data to the card.
e Read back after write is turned OFF by default.
e The verify status will be maintained until the user resets the status or the DLL is unloaded.

LONG MCardVerifyOnOff (
IN BOOL bVerify

)i

9.18.2 Description of the Parameters

¢ bVerify indicates whether to turn on or off the verification. If bVerify is TRUE, Verification is
turned on, else verification is off.

9.18.3 Return

MCARD_S SUCCESS Successfully changed the verification status.

9.18.4 Sample code

LONG IReturn;
BOOL bVerify = TRUE;

IReturn =
MCardVerifyOnOff (/* Turns on the verification by sending TRUE */
bVerify
);
IND.COMMONTOOLS- VER1.12 Page 34 of 34

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.19 MCardReadFuse

9.19.1 Description

This API returns the status of the fuses in AT88SC1608 cards.

LONG MCardReadFuse (
IN MCARDHANDLE hMCard,
IN LPBYTE pbReadBuffer

)i

9.19.2 Description of the Parameters

¢ hMCard is the memory card handle returned on a successful call to MCardConnect.
o pbReadBuffer is the buffer supplied by the application layer where the bytes read are to be
stored.

9.19.3 Return

MCARD_S SUCCESS Successfully read the fuses.
MCARD_E_INTERNAL_ERROR An internal error has occurred in the DLL.
MCARD_W_ABORTED The operation was aborted.

9.19.4 Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */

LONG IReturn;

BYTE abyReadBuffer[3];
IReturn =
MCardReadFuse (/* Reads the Fuse Status into abyReadBuffer array */
hMCard,
abyReadBuffer
);
IND.COMMONTOOLS- VER1.12 Page 35 of 35

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.20 MCardBlowFuse

9.20.1 Description

This API is used to write/blow the fuses in AT88SC1608 card. The three fuses in the card are as FAB,
CMA and PER. The fuses are blown in the order FAB first, CMA second and PER last.

Description of Fuse indices

S.No. | Fuse Index Fuse description

1 0x01 FAB only

2 0x02 CMA (FAB and CMA only)
3 0x03 PER (FAB, CMA and PER)

If this APl is called to blow a fuse, all the lower indexed fuses also will be blown.

NOTE: It is mandatory to verify the 24-bit security code of the card prior to blowing the fuse and it is
the responsibility of the application. The MCSCM DLL shall NOT implicitly verify the security code.

LONG MCardBlowFuse (
IN MCARDHANDLE hMCard,
IN BYTE bFuselndex

)i

9.20.2 Description of the Parameters

e hMCard is the memory card handle returned on a successful call to MCardConnect.
e bFuselndex is the index of the fuse which is to be blown. Indexes corresponding to each fuse
is given in the API description.

9.20.3 Return

MCARD_S_SUCCESS Successfully blown the fuse.
MCARD_E_INTERNAL_ERROR An internal error has occurred in the DLL.
MCARD_W_ABORTED The operation was aborted.

9.20.4 Sample code

/* hMCard is the handle obtained in the call to MCardInitialize */
LONG IReturn;
BYTE bFuselndex = 2;

IReturn =
MCardBlowFuse (/* Blows the fuses FAB and CMA as the fuse index for CMA is sent */
hMCard,
bFuselndex
);
IND.COMMONTOOLS- VER1.12 Page 36 of 36

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

9.21 MCard4436BlowFuseOnOff

9.21.1 Description

e This APl is used to turn ON/OFF the blowing of fuse after verifying the transport key of
SLE4436 card.
e Fuse blowing is turned ON by default.

LONG MCard4436BlowFuseOnOff (
IN BOOL bBlow4436Fuse

)i

9.21.2 Description of the Parameters

e bBlow4436Fuse indicates whether to turn on or off the fuse blowing. If bBlow4436Fuse is
TRUE, fuse blowing is turned on, else it is off.

9.21.3 Return

MCARD_S_SUCCESS Successfully changed the BlowFuse status.

9.21.4 Sample code

LONG IReturn;
BOOL bBlow4436Fuse = TRUE;

IReturn =

MCard4436BlowFuseOnOff (/* turns on the fuse blowing by setting the status to TRUE */
bBlow4436Fuse
);

IND.COMMONTOOLS- VER1.12 Page 37 of 37

M.MCDLL.MANUAL.VER1.12

MCard DLL API Specification

10.0 Annex A

10.1 MCard API Error Codes

=8 SCM

MILEDCRFRTERE

The MCard API can return the standards Windows error codes ERROR_xxx and the smart card error
codes SCARD _xxx. Both are described in the Windows SDK files WINERROR.H and SCARDERR.H.
In addition, there are MCARD_xxx error codes to identify the source of an error more precisely. The
base value for MCARD_xxx error codes is 0x90100800, which is in fact the SCARD_xxx base value
with the COSTOMER_CODE_FLAG set and an additional offset of 0x800 added.

There are two groups of MCARD_xxx error codes. The MCARD_E_xxx codes representing serious
errors and the MCARD_W_xxx codes which are warnings. It's up to the application to decide whether

those warning are really error.

Error Code

Meaning

MCARD_S_SUCCESS

Successful operation

MCARD_E_INTERNAL_ERROR

An internal error has occurred

MCARD_E_NOT_IMPLEMENTED

API / functionality not implemented

MCARD_E_NOT_INITIALIZED

MCardInitialize not successfully called

MCARD_E_INCOMPATIBLE_READER

The reader is incompatible with the DLL

MCARD_E_UNKNOWN_CARD

Card could not be identified

MCARD_E_BUFFER_TOO_SMALL

The buffer for return data is too small

MCARD_E_INVALID_PARAMETER

One or more parameters are invalid

MCARD_E_READ_ONLY_ATTRIBUTE

This attribute can only be read.

MCARD_E_INVALID_HANDLE

The handle is invalid

MCARD_E_PROTOCOL_MISMATCH

Protocol error while connecting to card

MCARD_E_PROTOCOL_ERROR

Protocol error during card access

MCARD_E_CHAL_RESP_FAILED

Challenge response failed

MCARD_E_INVALID_MEMORY_RANGE

Invalid memory range

MCARD_E_INVALID_MEMORY_ZONE_ID

Specified memory zone ID is invalid for current card

MCARD_E_INVALID_PIN_ID

Specified PIN ID is invalid for current card

MCARD_E_INVALID_CHAL_RESP_ID

Specified challenge/response ID is invalid for
current card

MCARD_E_ERASURE_NEEDED

Erasure to be done before this write

MCARD_E_BITORDER_CHANGED

Bit Order Changed from default

MCARD_W_NOT_ALL_DATA_READ

Could not read all data from card

MCARD_W_NOT_ALL_DATA_WRITTEN

Could not write all data to card

MCARD_W_PIN_VERIFY_NEEDED

PIN must be verified before access is possible

MCARD_W_PIN_VERIFY_FAILED

PIN verification failed

IND.COMMONTOOLS-
M.MCDLL.MANUAL.VER1.12

VER1.12 Page 38 of 38

=8 SCM

MICEORPRTE WS

MCard DLL API Specification

No PIN verification attempts left, card probably

MCARD_W_NO_PIN_ATTEMPTS_LEFT locked

MCARD_W_NO_UNITS _TO _DECREMENT No units left in the card to decrement

MCARD_W_REMOVED_CARD The card has been removed
MCARD_W_TIMEOUT Timeout occurred
MCARD_W_ABORTED Command Aborted
MCARD_W_PROTECTED_AREA Can not write into protected area

10.2Memory cards supported

Card Type Value Cards covered
MCARDTYPE_UNKNOWN 0x00 None

oARDTYPE SuEsat
MCARDTYPE_SLE4418 0x02 SLE4418 from Infineon
MCARDTYPE_SLE4428 0x03 ghiﬁliiSSftfrrgSIE?:)?gchIumberger
MCARDTYPE_SLE4432 0x04 SLE4432 from Infineon
MCARDTYPE_SLE4436 0x05 SLE4436, SLE4436E from Infineon
MCARDTYPE_SLE4442 0x06 ghiﬁéﬁ fSnt)g:eI;P??ri?:Sclumberger
MCARDTYPE_SLE5536 0x07 SLE5536, SLE5536E from Infineon
MCARDTYPE_AT24C01ASC 0x08 AT24SC01ASC from ATMEL
MCARDTYPE_AT24C02SC 0x09 AT24C02SC from ATMEL
MCARDTYPE_AT24C04SC 0x0A AT24C04SC from ATMEL
MCARDTYPE_AT24C08SC 0x0B AT24C08SC from ATMEL
MCARDTYPE_AT24C16SC 0x0C AT24C16SC from ATMEL
MCARDTYPE_AT24C32SC 0x0D AT24C32SC from ATMEL
MCARDTYPE_AT24C64SC O0x0E AT24C64SC from ATMEL
MCARDTYPE_AT24C128SC OxOF AT24C128SC from ATMEL
MCARDTYPE_AT24C256SC 0x10 AT24C256SC from ATMEL
MCARDTYPE_AT24C512SC 0x11 AT24C512SC from ATMEL
MCARDTYPE_AT88SC153 0x12 AT88SC153 from ATMEL
MCARDTYPE_AT88SC1608 0x13 AT88SC1608 from ATMEL
MCARDTYPE_SLE4404 0x14 SLE4404 from Infineon
IND.COMMONTOOLS- VER1.12 Page 39 of 39

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

10.3Zone IDs

In the MCard API set, reference to Memory card zone is present in many APls.

Most of the cards have just one zone with Zone ID ‘0’ — SLE4406, SLE4418, SLE4428, SLE4432,
SLE36, SLE4442, SLE5536, AT24x series.

The AT88SC153 card has 4 zones
e ZonelDO — Configuration zone
e ZonelD1-3 - 3UserZones

The AT88SC1608 card has 9 zones

e ZonelDO — Configuration zone
e ZonelD1-9 - 8UserZones

10.4 PIN IDs

All the AT24x series of cards the SLE4418 and SLE4432 do not have any PIN security.
The SLE4406, SLE4436 and the SLE5536 have transport PINs with PIN ID ‘0’.

The AT88SC153 has two set of READ/WRITE PINs (a total of 4 PINs).

e PINIDO — WRITE PIN of Set 0
e PINID1 — WRITE PIN of Set 1
e PINID2 — READ PIN of Set 0
e PINID3 — READ PIN of Set 1

The AT88SC1608 has eight set of READ/WRITE PINs (a total of 16 PINs).

e PINIDO — WRITE PIN of Set 0
e PINID1 — WRITE PIN of Set 1
e PINID2 — WRITE PIN of Set 2
e PINID3 — WRITE PIN of Set 3
e PINID4 — WRITE PIN of Set 4
e PINIDS — WRITE PIN of Set 5
e PINIDG6 — WRITE PIN of Set 6
e PINID7 — WRITE PIN of Set 7
e PINID8 — READ PIN of Set 0
e PINID9 — READ PIN of Set 1
e PINID10 — READ PIN of Set 2
e PINID 11 — READ PIN of Set 3
e PINID12 — READ PIN of Set 4
e PINID 13 — READ PIN of Set 5
e PINID 14 — READ PIN of Set 6
e PINID15 — READ PIN of Set 7

The SLE4404 card has two set of PINS

PIN ID O -READ/WRITE protection for protected area (scratchpad/user memory)
PIN ID 1 -that denotes the number of times the user memory can be erased.
IND.COMMONTOOLS- VER1.12 Page 40 of 40

M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.0 Annex B

This annex describes in detail the characteristics of a few memory cards. The document also
highlights the differences between the memory cards, on various attributes. The purpose of the
document is to give an insight into the various features available in the different memory cards.

11.1 Memory card standards

The ISO 7816-10 describes two types of memory cards based on the contacts used. But most of the
memory cards in the market have vendor defined standards. So memory cards vary in memory sizes,
security features, zones, speed and complexity.

11.2Memory card protocols

Since the memory cards do not follow a single standard the protocols used to interface them also
differs from card to card. However they can be classified broadly as

e 2 — Wire Protocol
e 3 — Wire Protocol
e |IC Protocol
e Bit Protocol

11.2.1 Two-Wire protocol

In the 2-Wire protocol, apart from VCC, which is used to power the card, two other lines (CLOCK and
I/0) are used for the interfacing. The RST line in the 2 — Wire cards are usually meant for aborting the
command at any point of time. Otherwise the RST is maintained in the LOW state during normal
processing.

There are definite steps called Start/Stop conditions which need to be followed when sending
commands to a 2 — Wire protocol card.

11.2.2 Three-Wire protocol

The 3 — Wire protocol cards use a third line (RST) in addition to the two lines used by the 2 — Wire
cards. The RST is maintained in the logical HIGH state during a command transfer to the card. During
any other time it is maintained in the logical LOW state.

Similar to the 2 — Wire cards, the 3 — Wire cards also have a specific Start/Stop condition.

11.2.3 lIC protocol

This protocol is also similar to the 2 — Wire protocol considering the lines involved in interfacing the
card. However these cards require an “ACK” sequence. The card expects an ‘ACK’ from the reader
after it has transferred a byte. Similarly if the card successfully receives a byte from the reader it will
acknowledge it with the ‘ACK’. The ‘ACK’ is usually a bit ‘0’ transfer.

11.2.4 Bit level protocol

The protocol is known as bit level protocol as every pulse to the card will output the bit present in the
internal address at that time. Also the address will increment to the next location, so that on the next
clock pulse the bit at that address is output. The counter cards (used as phone cards) are
implemented with this protocol.

IND.COMMONTOOLS- VER1.12 Page 41 of 41
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3 Special features in various memory cards

11.3.1 SLE 4432

Protocol 2 — Wire

Manufacturer Infineon

Total Memory size 256 bytes of byte organized memory
Zones 1

PINs 0

Other Variants Not known

Permanent Write Protection

The card supports permanent write protection mechanism for its first 32 bytes. The write protection
status can be got at any time by reading the 32 protection bits which correspond each to the first 32
bytes in the card’s memory. Once set the protect bits cannot be reset.

The MCardSetMemoryWriteProtection API in the DLL supports this feature.

11.3.2 SLE 4442

Protocol 2 — Wire

Manufacturer Infineon

Total Memory size 256 bytes of byte organized memory

Zones 1

PINs 1

Other Variants Schlumberger PrimeFlex Store 2K / ISSI 2k

The card is the secure version of the SLE 4432.

Permanent Write Protection

The card supports permanent write protection mechanism for its first 32 bytes similar to the SLE4432.
This feature is supported by the MCardSetMemoryWriteProtection API in the DLL

PIN security

The PIN is a 3 byte security code given to the card user. This PIN has to be verified to perform any
type of write activity. There are 3 retries for the PIN verification after which the card will be
permanently write protected and of no use.

Once the PIN is verified the number of retries is reset back to three. This feature is supported by the
MCardVerifyPIN API in the DLL

The PIN once verified can be changed to any three byte number. This feature is supported by the
MCardChangePIN API in the DLL. PIN verification is valid for the current card session.

IND.COMMONTOOLS- VER1.12 Page 42 of 42
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3.3 SLE 4418

Protocol 3 — Wire

Manufacturer Infineon

Total Memory size 1024 bytes of byte organized memory
Zones 1

PINs 0

Other Variants Not known

Permanent Write Protection

The card supports permanent write protection mechanism for all its 1024 bytes. This is accomplished
by having 1024 protect bits each of which can be individually set and which correspond directly to the
1024 bytes of the card. This feature is supported by the MCardSetMemoryWriteProtection APl in
the DLL . The protection feature is irreversible similar to SLE4432/42.

11.3.4 SLE 4428

Protocol 3 — Wire

Manufacturer Infineon

Total Memory size 1024 bytes of byte organized memory
Zones 1

PINs 1

Other Variants Not known

Permanent Write Protection

The card supports permanent write protection mechanism for all its 1024 bytes similar to SLE4418.
This feature is supported by the MCardSetMemoryWriteProtection API in the DLL.

PIN security

The PIN is a 2 byte security code given to the card user. This PIN has to be verified to perform any
type of write activity. There are 8 retries for the PIN verification after which the card will be
permanently write protected and of no use.

Once the PIN is verified the number of retries is reset back to eight. This feature is supported by the
MCardVerifyPIN API in the DLL

The PIN once verified can be changed to any two byte number. This feature is supported by the
MCardChangePIN APl in the DLL . PIN verification is valid for the current card session.

IND.COMMONTOOLS- VER1.12 Page 43 of 43
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3.5 AT24C01A / 02/ 04/ 08 / 16/ 32/ 64/ 128 / 256 / 512

Protocol IIC

Manufacturer ATMEL

Total Memory size 1/2/4/8/16/32/64 /128 /256 /512 K bits
depending on the card (Byte organised)

Zones 1

PINs 0

Other Variants Some Xicor cards

All these cards are from ATMEL and they differ only in the memory capacity and thereby in the
number of address bytes required in the command. These cards are plain cards and have no security
whatsoever. There are no Protect bits or Security codes. They all follow IIC protocol (‘ACK’)

Random and Sequential Read

The SLE cards all support only random address READ, which require the address of the byte to be
read in each READ command.

But all these ATMEL cards support sequential read. In these cards if 100 bytes are to be read which
are in consecutive addresses, then a random read is done for the first byte and for the remaining
bytes a single sequential read can be done (the address need not be mentioned). This is because the
ATMEL cards internally remember the address and increment it for each read command
automatically. Thus faster reading is possible. This feature is supported by the normal
MCardReadMemory API itself. The sequential read is internally handled in the DLL.

Also, during a read operation if a read is attempted beyond the available memory the address roles
over from the last byte of the card’s entire memory to the first byte (0th address) and reading proceeds
again from there.

Page Write

Similar to the sequential read, these cards also support a page write (address need to be mentioned
only once). However the page write is limited by the page size of the card.

The page sizes range from 8 bytes to 128 bytes for these cards. Once the end of the a page is
reached, the next write will wrap around to the first byte of the same page overwriting the data there.
This is internally handled by the MCardWriteMemory API itself.

IND.COMMONTOOLS- VER1.12 Page 44 of 44
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3.6 AT88SC153

Attribute Value

Protocol IIC

Manufacturer ATMEL

Total Memory size 64 (config) + 3*64 (user) bytes
Zones 4

PINs 4 (2 READ and 2 WRITE as 2 sets)
Other Variants Not Known

Random and Sequential Read

As an IIC card, this card also has the same Sequential read facility. The normal MCardReadMemory
API can be used for this.

Page Write

Similarly there is the page write concept. The page size of these cards is 8. The normal
MCardWriteMemory API can be used for this.

Multi Zones

The card has three user zones. The zones can have different access rights. They also can have
different passwords (from the available set of two). Such cards have greater scope to be used as multi
application cards. The APIs MCardReadMemory and MCardWriteMemory internally handle the set
user zone as per the zone ID given by the application developer.

Two sets of PINs

The card supports two different sets of PINs. Each set has one READ PIN and one WRITE PIN. Thus
in effect there are four PINs. The three user zones can refer to any of these two PIN sets. Since we
have only 2 PIN sets but three user zones, one of the two PIN sets will have to be shared between the
user zones. The MCardVerifyPIN and MCardChangePIN can be used to verify and modify the PIN
sets, the PIN ID distinguishing the PINs in these calls.

Configuration Zone

The card has a special zone called the configuration zone. This zone contains data which configure
certain attributes of the card.

e Fuses

The various levels of personalization of the card is controlled by the Fuses present in the
configuration zone. The fuses can be read any time. Writing of the fuses in allowed only on
verification of the Write PIN of set 1. (also known as the SECURITY CODE). Writing the fuse is an
irreversible process and has to be done with care.

IND.COMMONTOOLS- VER1.12 Page 45 of 45
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

o Access Registers

The access registers define the various access rights to the user zones and when such access is
to be given. There is one byte of access register referring to a user zone. The eight bits in the
access register decides

The PIN set for the zone

Should the READ PIN be verified before a read is attempted

Should the WRITE PIN be verified before a write is attempted

Can the zone be written to (modified)

Is the zone erase proof (0 to 1 is allowed. 1 to 0 is not)

Whether “Challenge — Response” Authentication is required before a READ/WRITE

O 0 O O OO0

The configuration can be read with MCardReadMemory API and written to using the
MCardWriteMemory API with the appropriate zone ID. But writing to the configuration zone has to be
done with care as there are sensitive data within the the zone.

Two way Challenge — Response Authentication

These cards support a two way Challenge/Response sequence. This will enable both the reader and
the card to authenticate each other. The card has to respond to the random number generated by the
reader and it will also authenticate the reader by indicating so in its authentication retry counter.

This can be carried out with the MCardChallengeResponse API.

IND.COMMONTOOLS- VER1.12 Page 46 of 46
M.MCDLL.MANUAL.VER1.12

MCard DLL API Specification

AT88SC153
Authentication

Synchronoization
Read Mo

Calculate Ge
Fead cryptogram
Send random number
Caleculate cryptogram
Beader Authenticait on
Send cryptogram
CARD compares
cryptograms and
authenticat es reader
Feset attempt counter
C alculate creptogram
Card Authertication
R ead cryptogram
READER compares

cryptograms and
authenticates card

READER TRANSACTION
k= =system key
Gn = random nurmber
* Fead
e
Go=F (ks M)
F ead
- [§]
|rtitial ze Athentication »
On
Q- 1=F2{&c,Ci,0n)
Werify Athentication b’
On+l
Qrt2=F2(Gc 1,00
* R ead
Cisl
QmtE=CHZT

SCM

MILEDCRFRTERE

ATB8SC153

G = secr et seed
MNe = 1D number
Ci = cryptogram

i HA=F 3 5o, Ci 20)

Ci1=0n+17

MO = §FF

C#2=F2 Ge.Cit 1.0

11.3.7 AT88SC1608
Protocol IIC
Manufacturer ATMEL
Total Memory size 128 (config) + 8*256 (user) bytes
Zones 9
PINs 16 (8 READ and 8 WRITE as 8 sets)
Other Variants Not Known

Random and Sequential Read

As an lIC card, this card also has the same Sequential read facility. The normal MCardReadMemory

API can be used for this.

Page Write

IND.COMMONTOOLS-
M.MCDLL.MANUAL.VER1.12

VER1.12

Page 47 of 47

s 2CM

MCard DLL API Specification

Similarly there is the page write concept. The page size of these cards is 16. The normal
MCardWriteMemory API can be used for this.

Multi Zones

The card has eight user zones. The zones can have different access rights. They also can have
different passwords (from the available set of eight). Such cards have greater scope to be used as
multi application cards. The APIs MCardReadMemory and MCardWriteMemory internally handle the
set user zone as per the zone ID given by the application developer.

Eight sets of PINs

The card supports eight different sets of PINs. Each set has one READ PIN and one WRITE PIN.
Thus in effect there are sixteen PINs. The eight user zones can refer to any of these eight PIN sets.
The MCardVerifyPIN and MCardChangePIN can be used to verify and modify the PIN sets, the PIN
ID distinguishing the PINs in these calls

Configuration Zone

The card has a special zone called the configuration zone. This zone contains data which configure
certain attributes of the card.

e Fuses

The various levels of personalization of the card is controlled by the Fuses present in the
configuration zone. The fuses can be read any time. Writing of the fuses in allowed only on
verification of the Write PIN of set 1. (also known as the SECURITY CODE). Writing the fuse is an
irreversible process and has to be done with care.

IND.COMMONTOOLS- VER1.12 Page 48 of 48
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

e Access Registers

The access registers define the various access rights to the user zones and when such access is
to be given. There is one byte of access register referring to a user zone. The eight bits in the
access register decides

The PIN set for the zone

Should the READ PIN be verified before a read is attempted
Should the WRITE PIN be verified before a write is attempted
Should the authentication be done before the READ/WRITE

O O O O

The configuration can be read with MCardReadMemory API and written to using the
MCardWriteMemory API with the appropriate zone ID. But writing to the configuration zone has to be
done with care as there are sensitive data within the the zone.

Two way Challenge — Response Authentication

These cards support a two way Challenge/Response sequence. This will enable both the reader and
the card to authenticate each other. The card has to respond to the random number generated by the
reader and it will also authenticate the reader by indicating so in its authentication retry counter.

This can be carried out with the MCardChallengeResponse API.

AT888C1 6{]8 READER TRANSACTION ATB88SC1608
H H ks = system kay Go=secret seed
AUthentlcatlon 3N = random number M = 10 nurnber
Ci = cryptogram
Synchronoizaion
Fead He * R;:d
Calculate Go GosFAC ke Ha)
Fead cryptogram - RE!d
Send random number |ntitialze Athentication
N On >

C alculate cryptogram Qrt1=F2(G i, 0n0 CHA=Fa e, Ci 000

Resder Authenticait on

Send cptogram Werify Athentication

On+1 b
CARD compares CH1=0n+17
cryptograms ard
suthenticat == reader
ResetattempE counter BAC = FFF

C alculate cryptogram

Card Authentication
R &2ad cryptogram

QO 2=F2(Ge,Ci,0n)

Fead

Ci2=F2f G, Cit 1,21

M.MCDLL.MANUAL.VER1.12

- Ci+2
READER compares Q2 =CH2 ™
cryptogranms and
authenticat e card
IND.COMMONTOOLS- VER1.12 Page 49 of 49

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3.8 SLE4406

Protocol Bit protocol

Manufacturer Infineon

Total Memory size 16 bytes including 5(8-bit) stage counter
Zones 1

PINs 1 (Transport code)

Other Variants Not Known

Phone cards

These cards are usually used as phone cards. They have a 5 stage counter and they are an abacus
type of counter.The counters cannot be recharged.

The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown
during decrement counter. The counter can be decremented with the MCardDecrementCounter API.

Secure Challenge — Response Authentication

These cards support Challenge/Response sequence and hence are considered very secure. So
freaking such cards is very difficult. The host reader will challenge the card each time with a random
number and based on the algorithm implemented the card will return the response which can be
authenticated by the reader. This can be carried out with the MCardChallengeResponse API.

Transport Code Protection

This card is protected during the transport from the chip manufacturer to the card manufacturer by a
special code called transport code. The transport code can be verified through the MCardVerifyPIN
API.

IND.COMMONTOOLS- VER1.12 Page 50 of 50
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3.9 SLE4436

Protocol Bit protocol

Manufacturer Infineon

Total Memory size 46 bytes including 5(8-bit) stage counter
Zones 1

PINs 1 (Transport code)

Other Variants Not Known

Phone cards

These cards are usually used as phone cards. They have a 5 stage counter and they are an abacus
type of counter.The counters cannot be recharged.

The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown
during decrement counter. The counter can be decremented with the MCardDecrementCounter API.

Secure Challenge — Response Authentication

These cards support Challenge/Response sequence and hence are considered very secure. So
freaking such cards is very difficult. The host reader will challenge the card each time with a random
number and based on the algorithm implemented the card will return the response which can be
authenticated by the reader. This can be carried out with the MCardChallengeResponse API.

Transport Code Protection

This card is protected during the transport from the chip manufacturer to the card manufacturer by a
special code called transport code. The transport code can be verified through the MCardVerifyPIN
API.

Counter Backup

These cards support the counter backup mechanism. This is useful when there is a failure in the
middle of a decrement operation, in which the decrement has been done but a reload of the lesser
significant stage has not yet been done. The backup bits indicate this and can be made use of to
issue the reload later on. The user can read the backup bits through the MCardReadMemory API
and do the necessary corrective action.

IND.COMMONTOOLS- VER1.12 Page 51 of 51
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification

11.3.10 SLE5536

Protocol Bit protocol

Manufacturer Infineon

Total Memory size 46 bytes including 5(8-bit) stage counter
Zones 1

PINs 1 (Transport code)

Other Variants Not Known

Phone cards

These cards are usually used as phone cards. They have a 5 stage counter and they are an abacus
type of counter.The counters cannot be recharged.

The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown
during decrement counter. The counter can be decremented with the MCardDecrementCounter API.

Secure Challenge — Response Authentication

These cards support Challenge/Response sequence and hence are considered very secure. So
freaking such cards is very difficult. The host reader will challenge the card each time with a random
number and based on the algorithm implemented the card will return the response which can be
authenticated by the reader. This can be carried out with the MCardChallengeResponse API.

Transport Code Protection

This card is protected during the transport from the chip manufacturer to the card manufacturer by a
special code called transport code. The transport code can be verified through the MCardVerifyPIN
API.

Counter Backup

These cards support the counter backup mechanism. This is useful when there is a failure in the
middle of a decrement operation, in which the decrement has been done but a reload of the lesser
significant stage has not yet been done. The backup bits indicate this and can be made use of to
issue the reload later on. The user can read the backup bits through the MCardReadMemory API
and do the necessary corrective action.

Extended Authentication

Apart from the normal authentication, these cards support Extended authentication known as the
Cipher Block Chaining. In extended authentication the result of the previous authentication is
remembered by the card (stored internally) and used for the subsequent authentication.

This will enable the cards to check that decrement has indeed happenened on the card. The extended
authentication mode is reverted back to normal upon power reset or addess reset. This can be carried
out with the MCardChallengeResponse API with a different ChallengelD.

IND.COMMONTOOLS- VER1.12 Page 52 of 52
M.MCDLL.MANUAL.VER1.12

=8 SCM

MILEDCRFRTERE

MCard DLL API Specification
11.3.11 SLE4404

Protocol Bit protocol
Manufacturer Infineon
Total Memory size 52 bytes (including counters)
Zones 1
PINs 2 (user code & Memory Code)
Other Variants Not Known

Fuses:

The cards are of use and throw type. There is a hardware fuse mechanism that is permanently blown
with the MCardWriteMemory API with the arguments offset 0x3e and length 1 with the data buffer to
be written containing the first byte 0x00.

Disclaimer:
The fuse status of the card can not be read and data can not be written to the 6-byte Issuer ROM area
using MCSCM dIl.

Memory Counter:

The SLE4404 card contains a Counter that cannot be decremented using a McardDecrementCounter
APL.It denotes the number of times the user memory can be erased.

User Code Protection:

This card comes with the user code that has to be verified for writing the contents of scratchpad and
the user memory area .The bits112/113 configures the user memory as read/write protected
accordingly (For further details refer the card specification). Modifying those bits (byte 0x0e) will
change the functionality of the user memory area. The user code can be verified using the
MCardVerifyPIN API and PINO.

Memory Code Protection:

The memory code verification (PIN 1) has to be done for erasing the contents of the user memory,
using the MCardVerifyPIN API with pinNumber1. On successful entry of memory code,the user
memory contents are erased (bits set to 1) and the memory counter is decremented by 1(a bit is
reset). Even an incorrect entry of memory code will decrement the memory counter and hence the
number of times the user memory can be erased. Even after the PIN1 trials are exhausted (meaning
that the user memory cannot be erased), the application can still reset the bits (can still write to the
remaining area). The memory code cannot/should not be changed using the MCardChangePIN API

IND.COMMONTOOLS- VER1.12 Page 53 of 53
M.MCDLL.MANUAL.VER1.12

